The First Defense: Fire Protection Devices

La première ligne de défense : dispositifs de protection incendie
Experience

Vipond has the products and expertise to provide innovative and code compliant solutions. Vipond is capable of P3 design build and is able to act as prime. Our applications include: multiple location networks, fiber optic networks, air aspiration systems, nuclear environments, power generation stations, armed forces, high security clearance environments, voice communication, and upgrades or retrofits.

Our Services

Vipond is your complete solution for service, maintenance and monitoring for fire, security and life-safety systems. Our trained specialists deliver expert service to help keep your systems in excellent working order, maximize your equipment investment and ensure 24/7 response to an emergency.

- **Testing & Inspection**: Ensures your code compliance and that systems are ready when needed.
- **Preventive Maintenance**: Keeps all components ready to protect life and property.
- **Service and Repair**: Gets you back on line 24/7/365.
- **System Monitoring**: Electronic surveillance across your fire, life safety and security infrastructure.

Fire Alarm

Our Fire Alarm panels are backward compatible and can accomplish a conventional or addressable system. Our panels have the capability to unify networking of multiple panels or a command and control application from one master panel.

Security

Let Vipond propose a complete security solution. We have expertise in a full range of security systems for Video Surveillance, Access Control, Perimeter Intrusion and Detection, Paging & Intercom as well as integrating these systems on a single interface.

Sprinkler

Whether the project calls for a Wet Fire Sprinkler System, a Dry Fire Sprinkler System, a fail-safe Pre-Action Fire Sprinkler System, or a Clean Agent Fire Suppression System, Vipond offers our clients the best solution, every time.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>From the Editor’s Desk</td>
</tr>
<tr>
<td>3</td>
<td>Message de la rédactrice en chef</td>
</tr>
<tr>
<td>4</td>
<td>President’s Message</td>
</tr>
<tr>
<td>5</td>
<td>Message du président</td>
</tr>
<tr>
<td>8</td>
<td>Learn Before You Work at Heights</td>
</tr>
<tr>
<td>10</td>
<td>Travailler en hauteur</td>
</tr>
<tr>
<td>12</td>
<td>Explanation of Fire Detection Zones and Zone Indication of Fire Alarms</td>
</tr>
<tr>
<td>14</td>
<td>Explication des zones de détection incendie et des indicateurs de zones d’alarme incendie</td>
</tr>
<tr>
<td>16</td>
<td>Extincteurs d’incendie portatifs – La responsabilité continue minimise les risques et rehausse la sécurité</td>
</tr>
<tr>
<td>20</td>
<td>Membership Information / Information sur l’adhésion</td>
</tr>
<tr>
<td>22</td>
<td>Portable Fire Extinguishers – Continual Accountability Minimizes Risk & Increases Safety</td>
</tr>
<tr>
<td>26</td>
<td>Chapter News</td>
</tr>
<tr>
<td>32</td>
<td>Fire Alarm Zoning: Low Frequency (520 Hz) Signals</td>
</tr>
<tr>
<td>36</td>
<td>Zonage d’alarme incendie : Signaux à basse fréquence (520 Hz)</td>
</tr>
<tr>
<td>42</td>
<td>CFAA 2017 National Board of Directors / Conseil d’administration national 2017</td>
</tr>
<tr>
<td>44</td>
<td>Education News & Updates / Upcoming Events</td>
</tr>
<tr>
<td>45</td>
<td>Advertisers Index & Rates</td>
</tr>
</tbody>
</table>

CFAA VISION STATEMENT

The CFAA will be recognized nationally as the definitive resource for fire alarm related information, education, qualifications, expertise, and industry support with active Chapters throughout Canada.

85 Citizen Court, Units 3 & 4, Markham, ON L6G 1A8

www.cfaa.ca www.acai.ca
It is tragic that with almost every new issue of the CFAA Journal, there is a fire tragedy of one kind or another highlighted in the intervening news. The most recent international incident involved the astonishing Grenfell Tower apartment fire in London, England that needlessly claimed many lives. In this context, the title of this issue: “The First Defense: Fire Detection Devices”, serves as an appropriate reminder of the work done by Fire Alarm Technicians and their role in a well executed and comprehensive fire safety plan. Fire detection devices are the most critical element in preventing the escalation of any fire. Although a full inquiry into the London fire has been ordered, preliminary assessments certainly point to deficiencies in building code rules, inspections and the absence of sophisticated fire protection systems in buildings that are home to so many people.

The articles in this issue certainly highlight the nature of the changing environment in which we do business. Discussion of building code requirements for fire zone coverage, the importance of fire extinguisher monitoring and the efficacy of 520 Hz low frequency signals not only illustrate the complexity we are facing daily, but also the evolving technology and research that allows the profession to evolve. All of this serves to reinforce the importance of ongoing education in our profession. On that note, we also have an article reminding us of the need for technicians to have “Working at Heights” training if they ever work at a height above 3 metres or 10 feet.

We hope you enjoy this edition of the Journal and the upcoming summer season.

Ann Law
CFAA Editor in Chief
À la publication de pratiquement chaque numéro de la revue de l’ACAI, il est tragique de constater que les nouvelles rapportent un quelconque événement lié à une tragédie incendie. Le plus récent incident international implique l’ épouvantable incendie de la tour à logements Grenfell Tower à Londres, en Angleterre, qui a inutilement causé de nombreux décès. Dans ce contexte, le titre de la revue : « La première ligne de défense : dispositifs de protection incendie », sert de rappel approprié du travail accompli par les techniciens en alarme incendie et de leur rôle dans le cadre d’un plan de sécurité incendie détaillé et bien exécuté. Les dispositifs de détection incendie sont les éléments les plus importants pour prévenir l’escalade d’un incendie. Même si une enquête approfondie de l’incendie à Londres a été commandée, l’examen préliminaire semble viser des infractions aux règlements du Code du bâtiment, aux inspections et l’absence de systèmes de protection complexes dans les édifices qui hébergent tant de personnes.

Les articles du présent numéro soulignent de toute évidence la nature de l’environnement changeant dans lequel nous faisons affaire. Les discussions entourant les exigences du Code du bâtiment relativement à la couverture des zones d’incendie, l’importance de la surveillance des extincteurs d’incendie et l’efficacité des signaux à basse fréquence de 520 Hz illustrent non seulement la complexité que nous devons affronter chaque jour, mais aussi le caractère évolutif de la technologie et de la recherche qui permet à la profession d’évoluer. Tous ces aspects servent à renforcer l’importance de la formation continue au sein de cette profession. À ce sujet, nous proposons un article soulignant la nécessité pour les techniciens de suivre la formation sur le travail en hauteur lorsqu’ils travaillent à des hauteurs de 3 mètres (10 pieds) ou plus.

Nous espérons que vous aimerez ce numéro de la revue et profiterez de la saison estivale.

Ann Law
Rédactrice en chef de l’ACAI

Thank you to the contributing authors for finding time in your busy schedules to donate your effort, writing skills, and most importantly, for sharing your knowledge.

Merci aux différents auteurs d’avoir pris du temps de vos horaires chargés pour offrir vos efforts, vos talents de rédaction et, plus important, d’avoir partagé vos connaissances.
Welcome to the CFAA Journal. Over the last few months, we’ve been busy at work at the CFAA National Office on a few important initiatives.

Firstly, we’ve been working on the delivery of CFAA Category 1 Continuing Education. We’ve developed a multi-faceted approach to make a wide range of delivery options available for our Registered Technicians. This includes all-day Seminars (where attendees can obtain all eight credits), working with approved training partners to offer the courses through Third Parties, and Remote Training for Technicians who cannot readily access our training events in person.

If you would like more information on the Continuing Education options available, please contact the CFAA offices.

In this Edition of the Journal, Betty MacDonald from the Health and Safety Management Group discusses requirements for Working at Heights training. As fire alarm technicians regularly climb ladders and work on elevated platforms, knowing the proper ways of protecting yourself is vital to ensuring everyone goes home safe at the end of the day.

Next, Don Boynowski, Past President of the CFAA, provides an article about fire detection zones and zone indication of fire alarms. This article, written to be included as Appendix Material to the next edition of CAN/ULC S524, Installation of Fire Alarm Systems, discusses the requirements of the National Building Code of Canada with respect to proper fire alarm zoning. Don also provided an article on 520 Hz low frequency signals. These new devices, which have been requested to be included in the National Building Code of Canada, have in recent research proven to be an effective way of alerting sleeping persons in the event of a fire.

Our final technical article in this Edition of the Journal comes from Wayne Moore of JENSEN HUGHES. In his article, Wayne discusses the advancements of Fire Extinguisher monitoring technology. This technology, which was recently reviewed by Underwriters’ Laboratories of Canada, provides continual monitoring of the presence and condition of fire extinguishers by the fire alarm.

Lastly, we have updates from our local Chapters on their activities and events. This is a great way of getting to know what’s going on in your local area and who you can contact to get involved with the Association at your local Chapter. Thanks again to our Chapter Presidents for putting together these updates.

Thank-you for taking the time to read the CFAA Journal. As we start into summer, I hope everyone has a safe and enjoyable season. As always, we welcome your comments, suggestions, and feedback.

Sincerely,
Simon Crosby
CFAA National President
president@cfaa.ca

Have thoughts or ideas? Call or write me anytime at president@cfaa.ca
Bienvenue à la revue de l’ACAI. Au cours des derniers mois, le bureau national de l’ACAI a travaillé très fort sur plusieurs initiatives importantes.

D’abord, nous avons travaillé sur la prestation de la formation continue de l’ACAI pour la catégorie 1. Nous avons élaboré une approche à volets multiples afin d’offrir une vaste gamme d’options à nos techniciens inscrits. Cela comprend des séminaires d’une journée (où les participants peuvent obtenir les huit crédits), le travail avec des partenaires de formation approuvés pour offrir des cours par l’entremise de tierces parties et la formation à distance pour les techniciens qui ne sont pas en mesure de participer à nos activités de formation en personne.

Si vous souhaitez obtenir plus de renseignements sur les options de formation continue disponibles, veuillez communiquer avec le bureau de l’ACAI.

Dans le présent numéro de la revue, Betty MacDonald du Health and Safety Management Group discute des exigences entourant la formation sur le travail en hauteur. Puisque les techniciens en alarme incendie sont souvent appelés à grimper dans des échelles et à travailler sur des plateformes élévatrices, il est essentiel pour eux de connaître les façons appropriées de se protéger pour s’assurer que tout le monde retourne à la maison sain et sauf à la fin de la journée.

Ensuite, Don Boynowski, ancien président de l’ACAI, propose un article sur les zones de détection d’incendie et les indicateurs de zones des systèmes d’alarme incendie. Cet article, rédigé dans le but de faire partie de l’annexe portant sur le matériel de la prochaine édition de la norme CAN/ULC S524, Installation des réseaux avertisseurs d’incendie, aborde les exigences du Code national du bâtiment du Canada en ce qui concerne le zonage approprié des systèmes d’alarme incendie. Don fournit également un article sur les signaux à basse fréquence de 520 Hz. Selon les récentes recherches, ces nouveaux dispositifs, qui ont fait l’objet d’une demande d’inclusion dans le Code national du bâtiment du Canada, se sont révélés être une manière efficace d’alerter les personnes qui dorment en cas d’incendie.

Le dernier article technique de ce numéro de la revue a été rédigé par Wayne Moore de JENSEN HUGHES. Dans cet article, Wayne discute des progrès de la technologie de surveillance des extincteurs portatifs. Cette technologie, récemment examinée par les Laboratoires des assureurs du Canada, fournit une surveillance continue de la présence et de l’état des extincteurs d’incendie par le système d’alarme.

Enfin, nos sections locales nous donnent des nouvelles sur leurs activités et événements. C’est une excellente façon de savoir ce qui se passe dans votre région et avec qui communiquer pour participer aux activités de l’Association au niveau de votre section locale. Je remercie nos présidents de sections locales de partager ces renseignements avec nous.

Je vous remercie également de prendre le temps de lire la revue de l’ACAI. Je vous souhaite à tous et à toutes une saison estivale sécuritaire et agréable. Comme toujours, c’est un plaisir de recevoir vos commentaires et suggestions.

Cordialement,
Simon Crosby
Président national de l’ACAI
president@cfaa.ca
Less = More

Get everything you need in one full line of AV appliances. Building off the success of SpectrAlert® Advance, the enhanced and expanded L-Series gives you more ways to save.

Lower Current Draw

up to 35% more efficient, reducing the number of power supplies needed

Less Installation Time

easier to configure, set up and inspect

Limited Overhead

product standardization reduces SKUs

Introducing the innovative L- SERIES

from System Sensor

Now including compact horn and strobe devices.

Featuring a new low-profile design with a high-fidelity speaker and a full range of candela settings now standard.

systemsensor.ca/av | 800-736-7672
FireFinder® XLS protects your future in more ways than one. Our premier fire safety system is fast, powerful and offers the premium features and options you need. It’s been designed for easier installation, simplified maintenance and greater flexibility for expansions, upgrades and custom applications. The result is intelligent fire safety that’s state-of-the-art, cost-effective and especially effective for large, complex or specialty applications.

FireFinder XLS delivers confidence. Its true ring topology and layers of redundancy ensure continuous communication. A large, intuitive interface and increased processing power make it fast and easy to use in an emergency. Compatible with a variety of devices and inputs, it addresses your industry-specific applications and code compliance needs.

Speed, power, flexibility – FireFinder XLS has everything your facility needs.

www.usa.siemens.com/firefinder-xls
All provincial jurisdictions in Canada require fall protection training. If you are a fire alarm technician climbing ladders, using a scissor lift or a boom truck to install wiring for a fire alarm, or any form of fall protection, you need Working at Heights Training. To reduce your risk of falling and injury, you should learn how to protect yourself.

Working at Heights training is required under the Ontario Occupational Health and Safety Act and the construction regulation O. Reg. 213/91 291. The law says if you have a hazard from falling over 10 feet, you should have this training. Training is required for workers on construction projects who use any of the following methods of fall protection: travel restraint systems, fall restricting systems, fall arrest systems, safety nets and work belts or safety belts.

If you are doing an inspection in an industrial establishment and are working 10 feet above ground, you are required to have Working at Heights training. The training can be from your own internal program. However, the Ministry of Labour must approve the program. In the construction sector, it is required to have Working at Heights Training from an approved provider.

In Ontario employers must ensure that certain workers complete a working at heights training program, delivered by a training provider, both approved by the Ministry of Labour, before they can work at heights. A list of providers is here: https://www.labour.gov.on.ca/english/hs/wah_providers.php.

The Ministry has now extended the transition period for the new rules for some people by six (6) months to October 1, 2017. Employers will have until then to ensure that workers successfully complete approved training. The extension applies only to experienced workers - those who completed fall protection training prior to April 1, 2015 - who are enrolled in an approved working at heights training program scheduled to be completed before October 1, 2017.

Falls of less than three metres (under 10 feet) are among the leading causes of injuries resulting in workers missing time at workplaces in Ontario's industrial sector. In 2015, there were eight work-related deaths from falls at industrial workplaces.

We provided on site Working at Heights Training recently for Carlon Fire in Markham. Mike Phillips of Carlon had these kind words, which explain the benefits better than I can: "Having The Health and Safety Management Group involved in our workplace safety program is instrumental in keeping our technicians current and compliant. Their in-house training options allow us to provide necessary safety training on our schedule, rather than losing handfuls of technicians at random intervals, while giving us the security of knowing the training our personnel receive is consistent and correct. The addition of their new, ministry-approved Working at Heights seminar is just one more way they are making it easier for us to run our business, and safer for our employees in the field."

The author is President of The Health and Safety Management Group, thehsmg.com; a training organization dedicated to life safety which has served the Fire Alarm industry for 14 years. They are an authorized Working at Heights trainer.

Betty McDonald
President, THE HEALTH AND SAFETY MANAGEMENT GROUP
Durable, Reliable Protection from -40°F to 280°F

THERMOFLEX®

MP SERIES

Conventional Heat Detection for Harsh Environments and Unconditioned Spaces

The MP Series features robust construction, dependable performance and discreet protection in a stylish low profile design.

Technical specifications and complete list of distribution partners can be found at:

www.firedetectiondevices.com

- Parking garages and commercial vehicle storage.
- Wineries, greenhouses and food processing facilities.
- Cold storage & unheated space.
- Heavy industry & manufacturing.
- Recreational facilities with swimming pools and skating rinks.
- Any facility where corrosion or condensation is present.

Our OEM Partners include:
Tous les territoires provinciaux au Canada exigent une formation sur la protection contre les chutes. En tant que technicien en alarme incendie, si vous grimpez dans des échelles, utilisez une plateforme élévatrice à ciseau ou un camion à flèche pour installer le câblage d’un système d’alarme incendie, ou toute forme de protection contre les chutes, vous devez suivre une formation sur le travail en hauteur. Pour réduire vos risques de chutes et de blessures, vous devez apprendre à vous protéger.

Une formation sur le travail en hauteur est exigée en vertu de la Loi sur la santé et la sécurité au travail et du règlement sur les chantiers de construction O. Reg. 213/91. La loi indique que s’il existe un risque de chute de plus de 3 mètres (10 pieds) de hauteur, vous devez suivre cette formation. La formation est requise pour les travailleurs œuvrant sur des chantiers de construction qui utilisent l’une ou l’autre des méthodes de protection contre les chutes suivantes : systèmes de limitation de déplacement, systèmes de limitation de chute, systèmes d’arrêt de chute, filets de sécurité et ceintures de travail ou ceintures de sécurité.

Si vous faites une inspection dans un établissement industriel et que vous travaillez à 3 mètres (10 pieds) au-dessus du sol, vous êtes tenu d’avoir suivi la formation sur le travail en hauteur. La formation peut être donnée par l’entreprise de votre propre programme interne. Cependant, le ministère du Travail doit approuver le programme. Dans le secteur de la construction, la formation sur le travail en hauteur doit être donnée par un fournisseur approuvé.

En Ontario, les employeurs doivent s’assurer que certains travailleurs suivent le programme de formation sur le travail en hauteur, offert par un organisme de formation, les deux approuvés par le ministère du Travail avant qu’ils puissent travailler en hauteur. Voici une liste de fournisseurs : https://www.labour.gov.on.ca/french/hs/wah_providers.php.

Le ministère a maintenant prolongé la période de transition concernant les nouvelles règles pour certaines personnes de six (6) mois jusqu’au 1er octobre 2017. D’ici cette date, les employeurs doivent s’assurer que les travailleurs suivent et réussissent une formation approuvée. Cette période de prolongation s’applique seulement aux travailleurs d’expérience – ceux qui ont suivi la formation sur la protection contre les chutes avant le 1er avril 2015 – qui sont inscrits dans un programme approuvé de formation sur le travail en hauteur dont l’achèvement est prévu avant le 1er octobre 2017.

Les chutes d’une hauteur inférieure à trois mètres (moins de 10 pieds) font partie des principales causes de blessures entraînant l’absence des travailleurs sur les lieux de travail dans le secteur industriel de l’Ontario. En 2015, huit décès au travail attribuables à des chutes sont survenus dans les lieux de travail industriels.

Récemment, nous avons offert une formation sur le travail en hauteur sur place pour Carlon Fire à Markham. Mike Phillips de Carlon nous a écrit ce beau message, qui explique mieux que moi les avantages : « La participation du The Health and Safety Management Group dans le cadre de notre programme de sécurité au travail est essentielle pour garder nos techniciens à jour et conformes. Leurs options de formation sur place nous permettent de fournir la formation de sécurité requise selon notre horaire, plutôt que de perdre plusieurs techniciens à intervalles aléatoires, tout en nous donnant la paix d’esprit en sachant que la formation de notre personnel est uniforme et appropriée. L’ajout du nouveau séminaire sur le travail en hauteur approuvé par le ministère représente une autre façon pour cet organisme de simplifier l’exploitation de notre entreprise et de rehausser la sécurité de nos employés sur le terrain. »

L’auteur est président du The Health and Safety Management Group, thehsmg.com, un organisme de formation dédié à la sécurité des personnes, qui a servi l’industrie de l’alarme incendie pendant 14 ans. L’organisme est un formateur autorisé sur le travail en hauteur.
SIMPLEX TrueAlert ES speakers feature excellent sound quality, so messages are heard even in busy environments.

They also combine Fire alarm with public address capability, so you can target different zones with different emergency announcements. Easier installation, testing and maintenance means fewer interruptions and better cost efficiency.

And as you may have heard, they provide the same design and wiring flexibility as all of our TrueAlert ES addressable solutions.

Sounds like the perfect choice for your next fire alarm project...call us today to find out more.
Article 3.2.4.8 of the 2015 National Building Code of Canada (NBC) requires that, except for specific situations, a fire alarm annunciator be provided in close proximity to a building entrance that faces a street or a fire access route. The annunciator is required to have separate zone indication of the actuation of the alarm initiating devices for each:

- floor area so that the area of coverage for each zone in a building that is not sprinklered is not more than 2 000 m²,
- floor area so that the area of coverage for each zone is neither
 - more than one storey, nor
 - more than the system area limits as specified in NFPA 13, “Installation of Sprinkler Systems”,
- shaft required to be equipped with smoke detectors,
- air handling system required to be equipped with smoke detectors,
- contained use area,
- impeded egress zone, and
- fire compartment required in Sentence 3.3.3.5.(2).

Unfortunately, the word “zone” is not a defined term within the NBC. On the other hand, ISO 7240-1, Fire Detection and Alarm Systems, Part 1: General and Definitions, does provide information that is useful.

Fire Detection Zone

geographic sub-division of the protected premises in which one or more points are installed and for which a common zonal indication is provided

The National Building Code of Canada requires indication of the physical areas, not specific fire alarm initiating devices, as firefighters should not be delayed in establishing how a fire may have spread within a building. It is imperative that they know immediately where new fire detector activations have occurred in an area of the building outside the initial zone of alarm.

Therefore, according to the National Building Code, fire alarm zones and not the specific alarm initiating devices are the mandatory units for the discrete indication of fire alarms. The aim is to provide unique indications for the areas in which fire alarms originate, so that a multiplicity of alarm initiations from fire detectors in one fire alarm zone do not clutter an annunciator and risk preventing the rapid recognition of new fire detection zones in alarm.

This could be achieved through the provision of specific annunciation (LED) of each unique fire alarm zone in the building with a supplemental alphanumeric (LCD) display of each device activation. Alternatively, a sequential alphanumeric (LCD) display listed to ULC-S527, Control Units for Fire Alarm Systems and capable of simultaneously announcing a minimum of eight fire alarm zones could be used.

A fire alarm zone will contain one or more fire detectors and/or manual stations installed within a localized area of the building. In general, a building is divided into fire alarm zones in order to assist in:

- the rapid location of the source of a fire alarm initiation,
- assessing the size of the fire and monitoring its rate of growth outside the original fire alarm zone, and
- sub dividing the installed system for the purposes of alarm organization and fire protection measures.

More than one fire alarm zone is not generally expected for a single floor area, except in the case of very large floors as found in warehouses or shopping malls. If a floor area of a building is subdivided into multiple areas, separated by fire and/or smoke barriers and the fire plan allows relocation of occupants from the area of origin to another area on the same floor, each area may be considered a separate zone.
For example, the NBC requires that floors containing patient sleeping rooms care and treatment occupancies contain at least two smoke separated compartments, each up to a maximum area of 1,000 m², on each floor for horizontal evacuation. Each of these smoke-separated compartments is required to be a separate fire alarm zone.

If the area is very large and not subdivided, it is general practice to limit the number of detectors and/or manual stations and consequently zones, to avoid an unacceptably large search area where the space is contiguous and without barriers.

It is common practice in certain applications such as high rise buildings, to separate fire detectors and manual stations into separate zones. This is to allow detectors in an area to be turned off easily while leaving manual station active to protect the area during renovations.

In addition to floors areas, the National Building Code of Canada requires that certain specific areas of buildings be separately identified on the fire alarm annunciator. These include physical areas, such as contained use areas, impeded egress zones, exit stairs, and elevator shafts. Other types of zones include duct-type smoke detectors and inputs from special fire suppression systems.

Just as firefighters should not be unnecessarily delayed in establishing how a fire may have spread beyond the initial fire zone within a building, neither should they be distracted by resounding of alarm signals. This is achieved by the reactivation of silenced fire alarm notification devices when a subsequent alarm is received by the fire alarm system. A “subsequent alarm” is defined by ULC-S527 as the activation of another input zone before the control unit is reset.

Similarly, for two-stage fire alarm systems, once the automatic evacuation timer is cancelled, the timer counter should not restart unless a subsequent alarm is received by the fire alarm system. Again, it is imperative that first responders are able to differentiate between a new fire detector activation in the same fire alarm zone or the spread of fire into another zone of the building.
Explication des zones de détection incendie et des indicateurs de zones d’alarme incendie

Ébauche annexe X (informative) (pour S524 & S527)

À moins de situations spécifiques, l’article 3.2.4.8 du Code national du bâtiment de 2015 (CNB) exige qu’un annonciateur d’alarme incendie soit installé à proximité de l’entrée d’un bâtiment qui donne sur une rue ou une voie d’accès aux véhicules du service d’incendie. L’annonciateur doit avoir des indicateurs de zones distincts pour le déclenchement des dispositifs d’alarme pour chaque :

- aire de plancher de façon qu’aucune zone d’un bâtiment qui n’est pas protégée par des gicleurs n’ait plus de 2'000 m²;
- aire de plancher de façon qu’aucune zone n’ait :
 - plus d’un étage;
 - plus de la limite spécifiée pour le système dans la norme NFPA 13 « Installation of Sprinkler Systems »;
- gaine ou cage verticale devant être équipée de détecteurs de fumée;
- installation de ventilation devant être équipée de détecteurs de fumée;
- système d’extinction d’incendie exigé par la norme NFPA 96 « Ventilation Control and Fire Protection of Commercial Cooking Operations »;
- zone de détention cellulaire;
- zone à sortie contrôlée;
- compartiment résistant au feu exigé au paragraphe 3.3.3.5.(2).

Par conséquent, selon le Code national du bâtiment, les zones d’alarme incendie, et non les dispositifs spécifiques de déclenchement d’alarme, représentent les éléments obligatoires des indicateurs discrets d’alarme incendie. Le but est de fournir des indicateurs uniques pour les zones à partir desquelles les alarmes incendie proviennent, de sorte que de multiples déclenchements d’alarme provenant de détecteurs d’incendie dans une zone d’alarme incendie n’encombrent pas l’annonciateur et ne préviennent pas l’identification rapide de nouvelles zones de détection d’incendie en alarme.

Cela peut être réalisé par l’installation d’un annonciateur spécifique (DEL) pour chaque zone unique d’alarme incendie dans le bâtiment, avec un écran d’affichage alphanumérique (LCD) supplémentaire pour chaque activation de dispositif. Autrement, un écran d’affichage alphanumérique séquentiel (LCD) inscrit selon la norme ULC-S527, Postes de contrôle pour les réseaux avertisseurs d’incendie, en mesure d’afficher simultanément un minimum de huit zones d’alarme incendie pourrait être utilisé.

Une zone d’alarme incendie comprendra un ou plusieurs détecteurs d’incendie et (ou) avertisseurs manuels installés dans un secteur localisé du bâtiment. En général, un bâtiment est divisé en zones d’alarme incendie pour contribuer à :

- localiser rapidement la source du déclenchement de l’alarme incendie;
- évaluer l’ampleur de l’incendie et à surveiller sa vitesse de progression à l’extérieur de la zone d’alarme incendie originale;
• sous-diviser le système installé afin d’organiser les alarmes et les mesures de protection incendie.

Habituellement, une seule zone d’alarme incendie est prévue sur une aire de plancher unique, sauf dans le cas des aires de plancher très grandes, comme les entrepôts et les centres commerciaux. Si l’aire de plancher d’un bâtiment est sous-divisée en multiples zones, séparées par des éléments coupe-feu ou coupe-fumée et que le plan de sécurité incendie prévoit le déplacement des occupants du secteur d’où provient l’alarme à un autre secteur sur la même aire de plancher, chaque secteur peut être considéré comme étant une zone séparée.

Par exemple, le CNB exige que les étages des établissements de soins et de traitements comprenant des pièces où les gens dorment soient équipés d’au moins deux compartiments de fumée séparés, chacun ayant une aire maximale de 1 000 m², sur chaque étage pour l’évacuation horizontale. Chaque compartiment de fumée séparé doit être relié à une zone séparée d’alarme incendie.

Si l’aire de plancher est très grande et non sous-divisée, la pratique générale consiste à limiter le nombre de détecteurs et (ou) d’avertisseurs manuels et, conséquemment, de zones, afin d’éviter d’avoir un secteur de fouille inacceptablement large, où l’espace est continu et sans obstacle.

Dans certains endroits, comme les bâtiments de grande hauteur, la pratique courante consiste à séparer les détecteurs d’incendie et les avertisseurs manuels en zones séparées. Cela permet d’étendre facilement les détecteurs dans un secteur, tout en laissant l’avertisseur manuel en marche pour protéger le secteur durant les rénovations.

En plus des aires de plancher, le Code national du bâtiment du Canada exige que certains secteurs spécifiques des bâtiments soient identifiés séparément sur l’annonciateur d’alarme incendie. Ceux-ci comprennent les zones physiques, les zones de détention cellulaire, les zones à sortie contrôlée, les escaliers de sortie et les gaines d’ascenseur. Les autres types de zones incluent les détecteurs de fumée de type conduit et les entrées provenant des systèmes spéciaux de suppression d’incendie.

Les pompiers doivent pouvoir identifier rapidement la propagation possible d’un incendie au-delà de la zone d’incendie initiale dans un bâtiment; parallèlement, ils ne devraient pas être distracts par le bruit des signaux d’alarme. Pour ce faire, il est possible de réactiver les dispositifs d’alarme incendie dont l’alarme a été interrompue lorsqu’une alarme subséquente est reçue par le système d’alarme incendie. Une « alarme subséquente » est définie par la norme ULC-S527 comme étant l’activation d’une autre zone d’entrée avant le réenclenchement du poste de contrôle.

De façon similaire, pour les systèmes d’alarme incendie à deux étapes, lorsque la minuterie d’évacuation automatique est annulée, le compteur de la minuterie ne devrait pas redémarrer, à moins qu’une alarme subséquente soit reçue par le système d’alarme incendie. De nouveau, il est essentiel que les premiers intervenants soient en mesure de différencier une nouvelle activation de détecteur d’incendie dans la même zone d’alarme incendie ou d’identifier la propagation de l’incendie dans une autre zone du bâtiment.
Portable Fire Extinguishers – Continual Accountability Minimizes Risk & Increases Safety

Technology now exists that will aid higher risk and large square footage occupancies in solving critical problems relating to the availability and use of portable fire extinguishers.

Portable fire extinguishers are required by code to be properly spaced throughout a facility for one simple reason; if working and accessible when needed, they are highly effective. A fire extinguisher is an active fire protection device used to extinguish or control small fires. It is not intended for use on an out-of-control fire. When a fire is contained or extinguished during its early stages of development, lives are saved and property losses are greatly reduced.

We often forget the important part a fire extinguisher plays in life safety because when a fire is extinguished in its early stages, the fire department is not always made aware of the incident. This fact has been revealed in numerous studies of fire extinguisher effectiveness. In the past twenty years, a number of independent studies have demonstrated that an available working fire extinguisher is most effective at controlling and extinguishing a fire at the earliest stage – study results include:

1. **80% of reported fires are successfully contained or extinguished by fire extinguishers.** 2010 Worcester Polytechnic Institute’s (WPI) study on fire extinguisher use in academic institutions.

2. **95% of reported fires are extinguished.** 1999 National Association of Fire Equipment Distributors

Furthermore, the Texas State Fire Marshal’s office tracks method of extinguishment for all reported fires within Texas state agencies and universities. Between 2008 – 2010, **45% of all reported fires were extinguished by fire extinguishers.** Given this performance history and the fact that fire extinguishers can only be effective if they are operable and accessible, it’s crucial to ensure that these life safety tools are ready to be used in an emergency.

Building and fire codes require every aspect of a building’s fire protection system to be monitored to ensure they are in working order. The only part of the building fire protection equation that remains a stand-alone, un-monitored fire protection device is the fire extinguisher. Given the importance of fire extinguishers in the life safety for the occupants, technology is readily available to ensure reliability of fire protection systems by monitoring these important devices.

Before we take a look at that technology, let’s first explore the nature of the problems institutions and businesses face. All crucial components of a building’s fire suppression & detection are required by code to be monitored continually (Sprinkler systems, Smoke Detection, Heat Detection, Engineered Suppression systems), except the only component that requires human interaction – the fire extinguisher. Typically, the local fire prevention officer or fire marshal will perform inspections and witness tests to determine whether or not the life safety systems remain operational. At the same time, the inspector will review the portable fire extinguisher tags to ensure that occupancies have performed monthly and annual inspections and tests on these important fire safety devices.

The **Standard for Portable Fire Extinguishers, NFPA 10,** requires that facility owners maintain portable fire extinguishers in a fully charged and operable condition. The owners must keep the extinguishers in their designated places at all times when they are not being used. The standard also requires that the owners conspicuously locate fire extinguishers where they are readily accessible and immediately available in the event of fire. Nothing may obstruct the fire extinguishers or obscure them from view.

Over the years, the National Association of Fire Equipment Distributors (NAFED) has kept the most comprehensive data on accessibility failures regarding fire extinguishers. Their survey data reveals a total disregard for extinguisher maintenance. Survey results showed:
• 24% of extinguishers inspected annually are not in the proper location
• 26% of extinguishers inspected annually are inoperable due to low pressure
• 90% of occupancies mandated to do their monthly inspections do not do them.

NAFED states: "Because portable fire extinguishers are central in helping to prevent fire damage and loss, and because of the fact that their effectiveness hinges on proper maintenance, these survey results are alarming." … … "Every effort should be made to ensure that, as a minimum, fire extinguishers are located and maintained in accordance with NFPA’s standards.”

In the United States, the National Fire Protection Association (NFPA) Life Safety Code, NFPA 101, addresses protective features and systems, building services, operating features, maintenance activities, and other provisions. These requirements recognize the fact that to achieve an acceptable degree of life safety depends on these additional safeguards in order to provide adequate egress time.

The common thread to every successful or unsuccessful outcome of a fire suppression effort relates to time. Forty-seven years ago, Rexford Wilson, then editor of the NFPA Fire Record (now the NFPA Journal) wrote an article entitled, "T-I-M-E, The Yardstick of Fire Control." The information in Mr. Wilson’s article remains valid today because we have not significantly changed how we respond to a fire condition. Time does indeed represent the yardstick of fire control. We most often speak of detection time, occupant response time, escape time, fire department response time, fire suppression set-up time, and suppression time, as the measured, specific time elements that mark the progression of a fire event.

In some instances, people will attempt to fight a fire with an extinguisher when they have not received proper training. Even worse, a trained person will "forget" the training he or she has received when faced with the crisis of a real fire. In both cases, the individual will begin to fight the fire, but fail to operate a manual fire alarm box to allow the fire alarm system to notify the other building occupants and to notify the fire department. When a person chooses to fight the fire before notifying the other building occupants and the fire department, they delay those critical notifications and significantly increase the danger to the other occupants of the building and negatively impact the response of the fire department. If his or her efforts to fight the fire fail, emergency responders will not have begun to respond to the fire because they have not yet received proper notification.

Fortunately, occupancies can employ technology to bridge the gap between what they expect to happen when someone discovers a fire and what actually happens. Following recent U.L.C. approvals, Canadian entities now have access to an active monitoring system for portable fire extinguishers. This extinguisher monitoring technology connects to the building fire alarm system or to any other centralized monitoring equipment. Whenever someone lifts a portable fire extinguisher, the interface module will initiate either a fire alarm signal or a supervisory off-normal signal on the fire alarm system. The type of signal will depend on the building fire plan that the owner has developed and on the requirements of the authority having jurisdiction (AHJ).

If someone blocks access to a portable fire extinguisher, the interface module will detect the blockage and, after a suitable and selectable time delay, initiate a supervisory off-normal signal on the building fire alarm system. This will notify building staff or occupants that something has blocked access to an extinguisher. In addition, the extinguisher monitoring system will monitor the stored pressure inside the portable fire extinguisher and initiate a super-
visory off-normal signal on the building fire alarm system to notify maintenance personnel that the extinguisher needs service.

The interface module along with an intelligent gauge, listed to be compatible with pressurized extinguishers, allows a portable fire extinguisher to become a fully supervised component of a monitored fire alarm system. The technology meets the requirements of NFPA 10 and the National Fire Alarm and Signaling Code, NFPA 72. Since this technology monitors fire extinguishers in accordance with NFPA 10, the occupancies only need one annual inspection of each extinguisher instead of 11 monthly inspections. The value of the extinguisher monitoring system rests on understanding the critical importance of time to truly effective fire protection. Using the extinguisher monitoring system allows system designers to integrate the use of portable fire extinguishers as part of the alarm notification process and to be included in the fire protection scheme. This will reduce the response time of the fire department and increase "detection" time using the best fire detector we have: humans.

Extinguisher monitoring technology offers many benefits to occupancies with large square footage or liability concerns. The 24/7 accountability ensures continued code compliance, increasing life safety and reducing the exposure to risk, liability and tampering. Additionally, by utilizing technology to ensure that the mandatory monthly inspection criteria are met, the technology helps occupancies reduce operating costs associated with the inspections. The state of New Hampshire became the first state in the United States to require extinguishers be electronically monitored in all new commercial construction where fire alarm systems are required. The State found that the requirement of the technology would actually be a cost positive for building owners.

Building and fire life safety officials would scoff at the concept of removing automated detection systems from occupancies and go back to the days where fire watchmen would patrol looking for any signs of fire. That is because continual accountability is logically better safety than periodic human checks. Today, fire extinguishers are assured the same level of dependability and accountability with the adoption of this new technology.

FIRE ALARM TECHNICIAN TRAINING

Canadian Fire Alarm Association training courses are available at SAIT in Calgary, Alberta. These fire alarm training courses are offered throughout the year:

- Electrical Theory 1
- Electronic Basics
- Fire Detection and Alarm Systems
- Advanced Fire Detection/Alarm Systems
- Portable Fire Extinguisher
- Pre-Engineered Restaurant Fire Suppression Systems

REGISTER TODAY
ma.training@sait.ca
403.284.8641
This is your chance to upgrade your knowledge & credentials

Today’s advancing technology, innovative designs and demanding fire alarm installations can be a challenge. To provide quality information to busy officials the Canadian Fire Alarm Association (CFAA) is offering a limited number of Fire and Building Officials Fire Alarm System Seminars nationwide.

LEARN MORE AT: www.cfaa.ca
CONTACT US: admin@cfaa.ca • 1.800.529.0552

Voici votre occasion de perfectionner vos connaissances et vos compétences

De nos jours, les progrès technologiques, les conceptions novatrices et les installations d’alarme incendie exigeantes peuvent poser de nombreux défis. Afin de fournir des renseignements de qualité aux représentants occupés, l’Association canadienne d’alarme incendie (ACAI) offre un nombre limité de séminaires portant sur les systèmes d’alarme incendie à l’intention des représentants de services d’incendie et des agents de bâtiment à l’échelle du pays.

LEARN MORE AT: www.cfaa.ca
CONTACT US: admin@cfaa.ca • 1.800.529.0552
Membership Information
JOIN US ... CFAA MEMBERSHIP

WHO CAN BE A MEMBER?
Any corporation, company, partnership or individual interested in the objectives and purposes of the CFAA.

VISIT www.cfaa.ca FOR FULL DETAILS ON CFAA COMPANY MEMBERSHIP, BENEFITS AND CATEGORIES.
APPLY ON-LINE TODAY!

MEMBERSHIP BENEFITS
Some membership benefits include:
• Membership Certificate for framing and display
• Receipt of the informative CFAA Journal
• Automatic subscription email notices of Upcoming Events, Seminars and on-line Journal availability
• Discounts at CFAA events, seminars and symposiums
• Access to benefits and discounts (through secure website login)
• Access to CFAA's archive of fire safety industry articles, presentations and online journal.
• Employment Opportunities Postings on the CFAA website
• Use of the "CFAA Member" logo
• A complimentary CFAA embroidered crest & vehicle decal
• The eligibility to purchase the CFAA Embroidered Crests & vehicle decal

MEMBER CODE OF ETHICS
Each Member of the Canadian Fire Alarm Association shall:
1. Be dedicated to safety of the public from fire, in all aspects of their fire alarm work;
2. Adhere to all applicable fire alarm codes, standards, and by-laws in all areas of fire protection including design, manufacture, application, installation, verification, maintenance servicing and promotion of fire alarm systems;
3. Only perform fire alarm services for which they have qualification and experience;
4. Be honest and truthful in all dealings;
5. Behave in a manner that upholds the principles and integrity of the Canadian Fire Alarm Association;
6. Support the education of industry participants concerning advances in Life Safety and Fire Alarm.

MEMBERSHIP CATEGORIES
Memberships are renewed on an annual basis.

National/Sustaining Member:
National Corporation with business operating centres in more than one Province $1200.00 + tax

Provincial/Sustaining Chapter Member:
Provincial Corporation maintains more than one business operating centre $600.00 + tax

Participating/Individual Member:
for a Corporation with a single business operating centre $300.00 + tax

TO BECOME A CFAA CORPORATE MEMBER (REGISTRATION PROCEDURE):
1. Visit www.cfaa.ca then Select ”Membership” on the home page.
2. At the bottom of the Membership pull-down menu select “Become a Member”.
3. Fill in the registration and select NEXT. (Important: As an email address is the login ID, you must use a different email address than the one you used as a technician. We suggest that you use your corporate email address.)
4. Enter your payment information.
Information sur l'adhésion

SOYEZ DES NÔTRES ... ADHÉSION À L'ACAI

QUI PEUT DEVENIR MEMBRE?
Toute société, entreprise, personne ou tout partenaire qui s’intéresse aux objectifs et aux buts de l’ACAI.

VISITEZ LE SITE WWW.ACAI.CA POUR CONNAÎTRE TOUS LES DÉTAILS SUR L'ADHÉSION À L'ACAI, LES AVANTAGES ET LES CATÉGORIES DE MEMBRE. ENVOYEZ UNE DEMANDE EN LIGNE AUJOURD'HUI!

AVANTAGES DES MEMBRES
Certains des avantages offerts aux membres comprennent :
• un certificat d’adhésion pouvant être encadré et affiché;
• la revue d’information de l’ACAI;
• l’inscription automatique aux avis envoyés par courriel concernant les événements à venir, les séminaires et la disponibilité de la revue en ligne;
• des réductions aux événements, séminaires et congrès de l’ACAI;
• un accès aux avantages et aux réductions (par l’entremise d’une ouverture de session en ligne sécurisée);
• un accès aux archives de l’ACAI d’articles, de présentations et de revues en ligne de l’industrie de la sécurité incendie;
• des occasions d’emploi affichées sur le site Web de l’ACAI;
• l’utilisation du logo « membre de l’ACAI »;
• un écusson brodé de l’ACAI;
• la possibilité d’acheter des écussons brodés de l’ACAI.

CODE DE DÉONTOLOGIE DES MEMBRES
Chaque membre de l’Association canadienne d’alarme incendie doit :
1. être dévoué à la sécurité du public en matière d’incendie dans tous les aspects de son travail;
2. respecter tous les codes et règlements administratifs et toutes les normes applicables au domaine de l’alarme incendie, et ce, dans toutes les sphères de protection incendie, incluant la conception, la fabrication, l’application, l’installation, la vérification, l’entretien et la promotion des systèmes d’alarme incendie;
3. seulement effectuer les travaux en alarme incendie pour lesquels il ou elle possède les qualifications et l’expérience;
4. être honnête et sincère dans toutes ses relations avec les autres;
5. se comporter de façon à soutenir les principes et l’intégrité de l’Association canadienne d’alarme incendie;
6. appuyer l’éducation des participants de l’industrie concernant les progrès dans le domaine de la sécurité des personnes et de l’alarme incendie.

CATÉGORIES DE MEMBRES
Les adhésions sont renouvelées sur une base annuelle.
Membre national/bienfaiteur : société nationale avec des centres d’exploitation dans plus d’une province 1,200 $ + taxes
Membre provincial/bienfaiteur de section locale : société provinciale ayant plus d’un centre d’exploitation 600 $ + taxes
Membre participant : pour une société ayant un seul centre d’exploitation 300 $ + taxes

POUR DEVENIR UN MEMBRE COLLECTIF DE L’ACAI (PROCÉDURE D’INSCRIPTION) :
2. Dans le menu déroulant de l’adhésion, sélectionnez « Devenir membre ».
3. Remplissez le formulaire d’inscription et sélectionnez SUIVANT (important : puisque l’adresse de courriel est requise pour l’ouverture de session, vous devez utiliser une adresse de courriel différente de celle que vous utilisez comme technicien. Nous vous recommandons d’utiliser votre adresse de courriel d’entreprise).
4. Inscrivez les renseignements sur le paiement.
Extincteurs d’incendie portatifs –
La responsabilité continue minimise les risques et rehausse la sécurité

La technologie existe maintenant pour aider les établissements à risque plus élevé et ayant une superficie en pieds carrés plus grande à régler les problèmes critiques associés à la disponibilité et à l’utilisation d’extincteurs d’incendie portatifs.

Le code exige que les extincteurs d’incendie portatifs soient correctement espacés dans l’ensemble de l’établissement pour une raison fort simple et, s’ils fonctionnent et sont accessibles au besoin, ceux-ci sont grandement efficaces. Un extincteur d’incendie est un dispositif de protection incendie actif qui est utilisé pour éteindre ou maîtriser de petits feux. Il n’est pas conçu pour être utilisé sur un incendie qui fait rage. Lorsqu’un feu est circonscrit ou éteint aux étapes précoces de son développement, des vies sont épargnées et les pertes de biens sont grandement réduites.

Nous oublions souvent l’importance que joue l’extincteur d’incendie relativement à la sécurité des personnes, car lorsqu’un feu est éteint aux étapes initiales de son développement, le service d’incendie n’est pas toujours avisé. Cela a été noté dans de nombreuses études sur l’efficacité des extincteurs d’incendie. Au cours des vingt dernières années, plusieurs études indépendantes ont révélé qu’un extincteur d’incendie fonctionnel et accessible est plus efficace pour maîtriser et éteindre un incendie dès sa déclaration. Voici certains résultats d’études :

De plus, le bureau du commissaire des incendies de l’État du Texas assure le suivi de la méthode d’extinction de tous les incendies signalés dans les organismes et universités du Texas. Entre 2008 et 2010, 45 % de tous les incendies signalés ont été éteints par des extincteurs d’incendie. Étant donné cet historique de performance et le fait que les extincteurs d’incendie peuvent seulement être efficaces s’ils sont fonctionnels et accessibles, il est essentiel de s’assurer que ces outils relatifs à la sécurité des personnes sont prêts à être utilisés en cas d’urgence.

Les codes du bâtiment et de prévention des incendies exigent la surveillance de tous les composants du système de protection incendie d’un bâtiment pour assurer leur bon fonctionnement. La seule partie de l’équation de la protection incendie d’un bâtiment qui demeure un dispositif autonome et non surveillé est l’extincteur d’incendie. Étant donné l’importance que revêtent les extincteurs d’incendie pour assurer la sécurité des occupants, la technologie est maintenant disponible pour assurer l’équilibre des systèmes de protection incendie en surveillant ces dispositifs importants.

Avant de se pencher sur cette technologie, explorons d’abord la nature des problèmes vécus par les établissements et les entreprises. Le code exige la surveillance continue des composants essentiels du système de détection et d’extinction d’incendie d’un bâtiment (systèmes d’extincteurs automatiques, détection de fumée, détection de chaleur, systèmes de suppression techniques), à l’exception du seul composant qui requiert une intervention humaine, soit l’extincteur d’incendie. Généralement, l’agent local de prévention des incendies ou le commissaire des incendies effectuera des inspections et des essais devant témoin pour déterminer si les systèmes de sécurité des personnes demeurent fonctionnels. À ce moment-là, l’inspecteur examinera les étiquettes des extincteurs d’incendie portatifs pour s’assurer que les établissements ont procédé aux inspections et aux essais mensuels et annuels de ces importants dispositifs de sécurité incendie.

La Standard for Portable Fire Extinguishers, NFPA 10 (norme sur les extincteurs d’incendie portatifs) exige que les propriétaires d’établissements maintiennent les extincteurs d’incendie portatifs pleinement chargés et fonctionnels. Les propriétaires doivent garder les extincteurs à
leurs endroits désignés en tout temps lorsqu’ils ne sont pas utilisés. La norme exige également que les propriétaires indiquent visiblement les emplacements d’extincteurs d’incendie, qu’ils soient facilement et immédiatement accessibles en cas d’incendie. Les extincteurs d’incendie doivent être dégagés et aucune obstruction ne doit gêner leur visibilité.

Au fil des ans, la National Association of Fire Equipment Distributors (NAFED) a compilé les données les plus détaillées sur les non-conformités en matière d’accessibilité des extincteurs d’incendie. Leurs données d’études révèlent une négligence totale envers l’entretien des extincteurs. Les résultats d’études indiquent que :

- 24 % des extincteurs inspectés annuellement ne se trouvent pas au bon endroit ;
- 26 % des extincteurs inspectés annuellement ne fonctionnent pas en raison d’une faible pression ;
- 90 % des établissements mandatés pour effectuer leurs inspections mensuelles ne le font pas.

La NAFED indique : « Puisque les extincteurs d’incendie portatifs sont essentiels pour contribuer à prévenir les dommages et les pertes associés aux incendies, et que leur efficacité relève d’un entretien approprié, ces résultats d’études sont alarmants. » « Tous les efforts devraient être déployés pour s’assurer qu’au minimum, ces extincteurs d’incendie sont situés et entretenus conformément aux normes de la NFPA. »

Aux États-Unis, le Life Safety Code (code de sécurité des personnes), NFPA 101 de la National Fire Protection Association (NFPA) aborde les caractéristiques et les systèmes de protection, les services du bâtiment, les caractéristiques de fonctionnement, les activités d’entretien et d’autres dispositions. Ces exigences reconnaissent que l’atteinte d’un niveau acceptable de sécurité des personnes dépend de ces dispositifs de protection supplémentaires pour fournir suffisamment de temps afin d’évacuer les lieux.

Le facteur commun au succès ou à l’échec des efforts de suppression d’incendie concerne le temps. Il y a quarante-sept ans, Rexford Wilson, éditeur à ce moment-là du Fire Record de la NFPA (maintenant le NFPA Journal), a rédigé un article intitulé « T-I-M-E, The Yardstick of Fire Control » (T.E.M.P.S, le critère de la maîtrise des incendies). L’information présentée dans l’article de M. Wilson demeure valide à ce jour, car nous n’avons pas changé de manière significative la façon dont nous réagissons à un incendie. C’est un fait que le temps est le critère de la maîtrise des incendies. Nous parlons souvent du temps relatif à la détection, à la réaction des occupants, à l’évacuation, à l’intervention du service d’incendie, à la coordination des efforts de suppression et à la suppression, comme étant les éléments de temps mesurés et spécifiques qui marquent la progression d’un incendie.

Heureusement, les établissements peuvent utiliser une technologie pour réduire l’écart entre les actions attendues
Lorsqu’une personne découvre un incendie et ce qui se produit dans les faits. À la suite des récentes approbations des U.L.C., les établissements canadiens ont maintenant accès à un système de surveillance actif pour les extincteurs d’incendie portatifs. La technologie de surveillance des extincteurs se connecte au système d’alarme incendie du bâtiment ou à tout autre équipement de surveillance centralisé. Chaque fois qu’une personne soulève un extincteur d’incendie portatif, le module d’interface déclenche un signal d’alarme incendie ou un signal de supervision de condition anormale sur le système d’alarme incendie. Le type de signal dépendra du plan de sécurité incendie du bâtiment que le propriétaire a mis sur pied et des exigences de l’autorité compétente.

Si quelqu’un bloque l’accès à l’extincteur d’incendie portatif, le module d’interface déctectera l’obstruction et, suivant un délai approprié et sélectionnable, déclenchera un signal de supervision de condition anormale sur le système d’alarme incendie. Cela avisera les occupants et le personnel du bâtiment qu’un objet bloque l’accès à l’extincteur. De plus, le système surveillera la pression de réserve à l’intérieur de l’extincteur d’incendie portatif et déclenchera un signal de supervision de condition anormale sur le système d’alarme incendie du bâtiment pour aviser le personnel de la maintenance que l’extincteur requiert un entretien.

Le module d’interface, avec une jauge intelligente, inscrit pour être compatible avec les extincteurs sous pression, permet à l’extincteur d’incendie portatif de devenir un composant pleinement surveillé du système d’alarme incendie supervisé. La technologie respecte les exigences de la NFPA 10 et du National Fire Alarm and Signaling Code (code national d’alarme incendie et de signalisation), NFPA 72. Puisque cette technologie surveille les extincteurs d’incendie conformément à la norme NFPA 10, les établissements ont seulement besoin d’une inspection annuelle de chaque extincteur, plutôt que 11 inspections mensuelles. La valeur du système de surveillance des extincteurs réside dans la compréhension de l’importance du temps critique pour assurer une protection incendie réellement efficace.

La technologie de surveillance des extincteurs offre de nombreux avantages pour les établissements ayant une large superficie en pieds carrés ou des préoccupations en matière de responsabilité. La responsabilité jour et nuit, 7 jours par semaine, assure la conformité continue au code, améliorant la sécurité des personnes et réduisant l’exposition aux risques, la responsabilité et les altérations. De plus, pour s’assurer que les critères obligatoires d’inspection mensuelle sont respectés, l’utilisation de cette technologie aide les établissements à réduire les coûts d’exploitation associés aux inspections. L’État du New Hampshire est devenu le premier état des États-Unis à exiger la surveillance électronique des extincteurs dans tous les nouveaux édifices commerciaux où des systèmes d’alarme incendie sont requis. L’État a constaté que l’exigence relative à cette technologie aurait des retombées positives au niveau des coûts pour les propriétaires de bâtiments.

Les responsables de bâtiments et de sécurité des personnes trouveraient dérisoire de retirer les systèmes de détection automatisés des établissements et de revenir à l’époque où les surveillants d’incendie patrouillaient les lieux à la recherche de signes d’incendie. Ils reconnaissent que la responsabilité continue est de toute évidence préférable aux contrôles périodiques effectués par les humains afin de fournir le meilleur niveau de sécurité possible. Aujourd’hui, les extincteurs d’incendie sont visés par le même niveau de fiabilité et de responsabilité que l’on retrouve dans les autres aspects de l’infrastructure de sécurité incendie avec l’adoption de cette nouvelle technologie.
FleX-Net™

Featured FleX-Net Project:
The Barrel Yards, Waterloo, Ontario
Mixed use site: hotel, commercial and residential high rise.

FleX-Net with Advanced Protocol (AP) features:

- **Larger Capacity** — Up to 318 devices per loop
- **Simple Installation** — Saves Time and Money
- **Supports MIX-COSAPA** — An intelligent multi-criteria fire/CO detector that is used in conjunction with the APB200 Series intelligent sounder bases
- **Faster Alarm Response Times** — Improved real-time system performance
- **Adherence to National Codes & Standards**

Designed for the most demanding fire protection and emergency communications applications.

To learn more, visit:
www.mircom.com/flex-net

Mircom™
Safer • Smarter • More Livable Buildings
National Capital Region Chapter Report

Peter Hallinan, National Capital Region Chapter President

Spring of 2017 has been busy for the National Capital Region Chapter after a stormy start that saw us cancel two of our meetings we were able to have a couple well attended meetings with great speakers. In April we had a presentation from ENGAUGE which is new to the Canadian Market as a supplier of Electronic Fire Extinguisher Monitoring and in May we had a presentation by Mark Jorgensen from Electrical Safety Authority on their role in the Fire Alarm process. Also in May we had Health and Safety Management Group put on 2 Technician courses that were attended by over 70 people, another course is planned for the 28th of June. At the May meeting we held our annual elections for the Chapter and the current board and officers were re-elected. Due to some issues with the original venue for our Annual Technical Seminar we have changed the date to Wednesday October 25th rather than November 8th and the committee will now be finalizing the details with the speakers and their topics. Our venue will be new this year from previous years and will be held at the Hellenic Banquet and Conference Center on Prince of Wales Dr. We will be the only ones using the facility which does a great job putting on events and seminars so we look forward to a successful and informative day.

Ontario Chapter Report

Evan Bombino, Ontario Chapter President

It is with great pleasure that I write my first communication to the Ontario CFAA members. I’m excited about the year ahead of us, in this ever changing industry of Fire Protection. The world is changing and moving forward at supersonic speeds and so is the fire alarm industry. Our time is now, to persevere down the road of change and playing a pivotal part as a CFAA member and an industry provider. Technology has been at the forefront of our business and the only way to keep up with it is to educate ourselves. Without staying involved and educating ourselves along the road of change, we will fall behind, losing track of new technologies, code changes, and current critical events that are effecting our livelihood of fire alarm.

Our newly formed Ontario chapter Board of Directors have been voted in and the wheels are already in motion, prior to our first committee meeting, to accomplish some tasks that will prove to be valuable to all of our members. In the next year, our Ontario chapter will be focusing on the growth of the chapter through education and members. As mentioned above, education is a big focus of ours and should be yours too. We will be doing everything possible to make education more accessible to our members, especially those who are in remote areas. We hope to offer more technical seminars, in many different formats, to compliment the recent success of the seminar that took place in May in Markham Ontario. We have members spanning across the province, with majority of them residing in the Greater Toronto Area. We will continue to work with the national education committee to leverage available technology to make sure all of our members have access to the training that’s needed.

As mentioned above, we will work on growth. Growth, not only through continuing education but in members as well. I believe that the fire alarm industry is growing due to the increase in population and the need for dwellings to house this growing population. In order to properly protect the people and assets in the province of Ontario, we will need to grow the association’s members by having strong relationships with the community and with the fire alarm employers. We will work on making our chapters’ communication great, so that you are all informed of the changes and hard work that your board of directors is putting into the association. I look forward to the year ahead and think the future is nothing but positive.
Rapport de région de la capitale nationale

Peter Hallinan, National Capital Region Chapter President

Le printemps 2017 a été une période occupée pour la section locale de la région de la Capitale nationale. Après un départ difficile nous ayant obligés d’annuler deux de nos réunions, nous avons été en mesure d’organiser quelques réunions bien achalandées avec d’excellents conférenciers. En avril, nous avons assisté à une présentation d’EnGuage, un nouveau fournisseur sur le marché canadien d’un système de surveillance électronique d’extincteurs d’incendie et, en mai, à une présentation de Mark Jorgensen de l’Electrical Safety Authority concernant leur rôle dans le processus d’alarme incendie. Également en mai, nous avons demandé au Health and Safety Management Group d’organiser deux cours à l’intention des techniciens qui ont attiré plus de 70 personnes. Un autre cours est prévu le 28 juin. Lors de notre réunion de mai, nous avons tenu les élections annuelles de la section locale et le conseil ainsi que les dirigeants actuels ont été réélus. En raison de quelques problèmes touchant l’emplacement original du séminaire technique annuel, nous avons changé la date au mercredi 25 octobre, plutôt que le 8 novembre, et le comité règle maintenant les derniers détails concernant les conférenciers et les sujets qui seront abordés. Le séminaire aura lieu à un nouvel endroit cette année, soit au Hellenic Banquet and Conference Center sur la promenade Prince of Wales. Nous serons les seuls à utiliser l’établissement, qui fait un excellent travail à organiser des événements et des séminaires, donc nous anticipons avec impatience la tenue d’une journée réussie et informative.

Rapport de région de l'Ontario

Evan Bombino, Ontario Chapter President

C’est un grand plaisir de rédiger ma première communication aux membres de l’ACAI de l’Ontario. J’anticipe avec beaucoup d’enthousiasme l’année à venir dans l’industrie de la protection incendie en constante évolution. Le monde change et avance à une vitesse supersonique, tout comme l’industrie de l’alarme incendie. Il est temps, aujourd’hui, de nous frayer un chemin sur la route du changement et de jouer un rôle indispensable comme membres de l’ACAI et fournisseur de l’industrie. La technologie a été à l’avant-plan de nos affaires et la formation continue est la seule façon de rester à jour. Si nous ne demeurons pas investis et informés au sein de cet environnement, nous perdrons du terrain, passant à côté des nouvelles technologies, des changements au code et des événements d’actualité essentiels ayant une répercussion sur nos capacités en matière de sécurité et de protection dans le domaine de l’alarme incendie.

Le conseil d’administration nouvellement formé de la section locale de l’Ontario a été élu et les roues tournent déjà avant même la première réunion du comité pour accomplir certaines tâches qui se révèleront utiles à tous nos membres. Dans la prochaine année, notre section locale de l’Ontario se concentrera sur la croissance par l’entremise de la formation et de l’adhésion. Comme mentionné ci-dessus, la formation est un point d’intérêt important pour nous, et devrait l’être pour vous également. Nous ferons tout en notre possible pour rendre la formation plus accessible pour nos membres, surtout ceux qui habitent dans des régions éloignées. Nous espérons offrir plus de séminaires techniques, sous de nombreux différents formats, en plus de notre récent séminaire très réussi qui a eu lieu en mai à Markham, en Ontario. Nous avons des membres à l’échelle de la province, dont la majorité habite dans la région du Grand Toronto. Nous continuerons de travailler avec le comité national sur l’éducation afin de tirer profit de la technologie offerte pour nous assurer que tous nos membres ont accès à la formation dont ils ont besoin.

Tel que mentionné, nous miserons sur la croissance. La croissance, non seulement par la formation continue, mais des membres également. Selon moi, l’industrie de l’alarme incendie est en plein essor en raison de la plus grande population et des besoins des logements accueillant cette population grandissante. Afin de protéger de façon appropriée les personnes et les biens en Ontario, nous devrons augmenter le nombre de membres de l’Association en établissant des relations solides avec la communauté et les employeurs en alarme incendie. Nous nous efforcerons d’assurer l’excellence des communications entre les sections locales, afin que tous soient informés des changements et des efforts déployés par le conseil d’administration pour l’Association. J’anticipe avec plaisir la prochaine année et le futur, à mon avis, n’est que positif.
Alberta Chapter Report

Joe Davis, Alberta Chapter President

I would like to start my pre-summer report by introducing your executive for the 2017-2018 term. We have added 6 new directors which will help bring additional depth and perspective to the board. We are also still looking for volunteers for our sub committees which include the following committees. Education, Codes and Standards, Industry Affairs and the Technician committee. If you would like more information please email me directly: jodavis@SimplexGrinnell.com

<table>
<thead>
<tr>
<th>NAME</th>
<th>COMPANY</th>
<th>CURRENT POSITION</th>
<th>NEW POSITION</th>
<th>SECTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joe Davis</td>
<td>JCI</td>
<td>President</td>
<td>President</td>
<td>Manufacturer</td>
</tr>
<tr>
<td>Russell Murray</td>
<td>Designcore Eng</td>
<td>2nd Vice President</td>
<td>1st Vice President</td>
<td>Engineer</td>
</tr>
<tr>
<td>Mark Wilson</td>
<td>JCI</td>
<td>Director</td>
<td>2nd Vice President</td>
<td>Manufacturer</td>
</tr>
<tr>
<td>Sandy Mackenzie</td>
<td>Behr</td>
<td>Secretary</td>
<td>Secretary</td>
<td>Service</td>
</tr>
<tr>
<td>Michael Liley</td>
<td>JCI</td>
<td>Director</td>
<td>Director</td>
<td>Manufacturer</td>
</tr>
<tr>
<td>Stephanie Jarema</td>
<td>JCI</td>
<td>Director</td>
<td>Director</td>
<td>Manufacturer</td>
</tr>
<tr>
<td>Connie Williams</td>
<td>Unitech</td>
<td>Director</td>
<td>Director</td>
<td>Service/ Electrical</td>
</tr>
<tr>
<td>Dean Norman</td>
<td>Vipond</td>
<td>Past President</td>
<td>Director</td>
<td>Service</td>
</tr>
<tr>
<td>Leonid Solonovich</td>
<td>RMWB</td>
<td>Director</td>
<td>Director</td>
<td>AHJ</td>
</tr>
<tr>
<td>Calvin Vander Leest</td>
<td>Vital Eng</td>
<td>N/A</td>
<td>Director</td>
<td>Engineer</td>
</tr>
<tr>
<td>Andrew Dodsworth</td>
<td>Eaton/ Cooper</td>
<td>N/A</td>
<td>Director</td>
<td>Manufacturer</td>
</tr>
<tr>
<td>Chris Sneesby</td>
<td>SMP Eng</td>
<td>N/A</td>
<td>Director</td>
<td>Engineer</td>
</tr>
<tr>
<td>Guy Otero</td>
<td>Concept Electric</td>
<td>N/A</td>
<td>Director</td>
<td>Service</td>
</tr>
<tr>
<td>Shane Normore</td>
<td>PDS Fire</td>
<td>N/A</td>
<td>Director</td>
<td>Service</td>
</tr>
<tr>
<td>Eduina Sousa</td>
<td>Chubb Edwards</td>
<td>N/A</td>
<td>Director</td>
<td>Manufacturer</td>
</tr>
</tbody>
</table>

The board has been working hard over the past year to help grow the CFAA in Alberta. One of the main initiatives is working with ECAA, NAIT and SAIT to implement the new CFAA curriculum into the apprenticeship program and for the electrical update program. I need to thank Kevin Harrison from NAIT for his assistance in driving this and Sherry McLain from ECAA for looking to the CFAA as the subject matter experts. NAIT has an amazing facility that would be a great asset for the CFAA to utilize for our practical exam tests as well. Here is an example of a few of many boards that they have and currently use in the electrical program.
We have also been working to strengthen our relationship with the Electrical Contractors Association of Alberta. We recently sponsored their AGM and had a booth at their training day to talk with electrical contractors about CFAA training. The event was attended by over 200 electrical contractors.

The other major topic of discussion is Standard FC1-08-06 in regards to existing fire alarm systems. It is in the process of being rewritten and the Alberta chapter has been asked for their input. We have developed a working group to discuss and provide input to the chief fire administrator. We feel that this is a very important topic and could have a huge bearing on our industry for the next 5 years until the 2020 National Fire code is adopted.

I am happy to announce that there is an online course available to get you category 1 continuing education credits on the CFAA website. They can be found here http://iconsult-lss.wixsite.com/iconsult. Also this year in Calgary we will be implementing a short test at the end of each presentation for the people who require their credits. You should be able to obtain 8 credits at the ATS this year. Mark your calendar. It will be September 21st.

I am going to ask one last time that if you can spare 1 hour a month and get involved in a subcommittee or working group you can help shape your industry in Alberta. As you know the CFAA is built on blood, sweat, and tears of volunteers and if you want input into your industry, this is the place to do it.

Fire Alarm Seminars for:

- Building Owners
- Facility Managers
- Building Managers
- Supervisory Staff
- Building Maintenance Personnel

Understand your fire alarm installation verification, inspection, testing, maintenance, and record retention requirements. Learn how you can maximize your building occupants fire safety!

To schedule a seminar or to learn more visit us at www.cfaa.ca
Rapport de région de l'Alberta

Joe Davis, président de la section locale de l’Alberta

J’aimerais commencer mon rapport de la période estivale en vous présentant votre conseil d’administration de 2017-2018. Nous avons ajouté six nouveaux directeurs qui contribueront à enrichir les connaissances et la perspective du conseil. Nous sommes toujours à la recherche de bénévoles pour nos sous-comités, dont les suivants : éducation, codes et normes, affaires de l’industrie et techniciens. Si vous souhaitez obtenir plus de renseignements, veuillez m’envoyer un courriel à jodavis@SimplexGrinnell.com.

Le conseil a travaillé fort au cours de la dernière année pour assurer la croissance de l’ACAI en Alberta. Une des principales initiatives vise à travailler avec l’ECAA, le NAIT et le SAIT afin de mettre en œuvre le nouveau programme de l’ACAI au sein du programme de formation en apprentissage et du programme de perfectionnement dans le domaine de l’électricité. Je souhaite remercier Kevin Harrison, du NAIT, pour son aide dans le cadre de ce projet et Sherry McLain, de l’ECAA, d’avoir fait appel à l’ACAI pour obtenir une expertise sur le sujet. Le NAIT possède une installation incroyable...

Je suis heureux d’annoncer que des cours en ligne sont disponibles pour obtenir les crédits de formation continue de la catégorie 1 sur le site Web de l’ACAI. Vous pouvez les visionner en cliquant sur le lien http://iconsult-lss.wixsite.com/iconsult. Également cette année, nous offrirons à Calgary un court test à la fin de chaque présentation pour les personnes qui ont besoin d’obtenir leurs crédits. Vous devriez être en mesure d’obtenir 8 crédits lors du séminaire annuel de formation qui aura lieu cette année le 21 septembre. Inscrivez la date à votre calendrier.

J’aimerais souligner une dernière fois que, si vous avez une heure de libre par mois et participez à un sous-comité ou à un groupe de travail, vous pouvez contribuer à façonner l’industrie en Alberta. Comme vous le savez, l’ACAI est fondée sur le travail ardu des bénévoles et si vous voulez des commentaires concernant l’industrie, c’est l’endroit tout désigné.

Merci,
Joe Davis
Président de la section locale de l’Alberta
Fire Alarm Zoning: Low Frequency (520 Hz) Signals

Change Request CCR 856

The Canadian Commission on Building and Fire Codes has requested that the Joint Task Group on Fire Alarm Systems examine the possibility that fire alarm signals have a frequency of 520 Hz.

Why Low Frequency and why 520 Hertz?

Over the last couple of years there has been quite a lot of talk about “low-frequency” and “520 Hertz (HZ)” in audible alarms and/or signals, as news of NFPA 72 requirements for the installation of 520 Hz sounders in sleeping areas spreads.

When I first got in the business, the standard fire alarm devices in most buildings were bells, either 6 inch or 10. The odd noisy factory would have mechanical horns.

In time, these devices were set aside in favour of the newer (at the time) low-current, high-frequency horns. People began to complain that they couldn’t hear them as well. I and others I know, were particularly confused by the same rating of both the 6 inch and the 10 inch bells. Most people in the industry did not understand at the time that frequency and harmonics were the issue, not the dB output level of the sound. The old devices had a low-frequency sound compared to the new devices. The 10-inch bell has a lower frequency sound and more harmonics compared to the 6-inch bell. The subjective “fullness” of the sound may give an impression of being louder, but this is not reflected in sound meter levels.

Then a fire department in Michigan first discovered that standard smoke alarms were not waking sleeping children. They put together a video on this, and it went viral.

Concurrently, a research team in Australia began to research why people were not awakening from the fire alarm signal. Of all the signals tested, the low frequency signal with a fundamental frequency of 520 Hz square wave was most effective the most effective emergency signal for awakening everyone, with or without hearing loss.

What Research shows

In 2007, Dr. Dorothy Bruck and Ian Thomas released a compilation of a decade’s worth of research in the report: “Awakening of Sleeping People: A Decade of Research”. That research was conducted at the Centre for Environmental Safety and Risk Engineering at Victoria University, Melbourne. Some of the details that follow were gleaned from either the Bruck/Thomas report that appeared in Fire Technology 46 in 2010 (pages 743 - 761), or the “Alarms and adults who are hard of hearing” report prepared for the Fire Protection Research Foundation in 2007.

Studies were conducted on both healthy adults and high risk groups. The high-risk group included school age children, people with hearing loss, and people under the effects of alcohol or drugs. Study participants were exposed to a range of signals across two non-consecutive nights while they were asleep. The signals tested were:

1. 400 Hz square wave signal
2. 520 Hz square wave signal
3. Pure tone 3 KHz signal
4. Bed shaker
5. Pillow shaker

In some studies, male voices, female voices and strobe lights were also added during the studies.

Of all the signals tested in over a decade of research, they found that the 520 Hz square wave signal was the most effective in waking everyone, with or without hearing loss. With children and young adults, the low-frequency signal is 6 to 10 times more effective than the current high-frequency signal. In adults with hearing loss, it was found to be more than seven times as effective as the standard high-frequency (~3100 Hz) tone used in most audible appliances today.

The strobes were not effective. You might think the pillow and bed shakers would be more effective and they were,
but remarkably, they were not as effective as the 520 Hz square wave sound.

So regardless of who was being tested, the 520 Hz square wave signal was the most effective sound in waking participants. This is particularly important when we talk about those among us who may be more at risk during a fire incident, such as children, adults who may be impaired, seniors and those with hearing difficulties. Clearly the implications are significant.

What is a 520 Hz Square Wave

It is important to note that a manufacturer’s claim of an alerting signal with a 520 Hz dominant frequency is not quite enough. The scientific research that led to the 520 Hz requirement in the US and that is being proposed for Canada demonstrated that a mixed frequency, with the 520 dominant and harmonics, is what is required for maximally effective awakening power. The odd harmonics make it a somewhat discordant sound instead of a clear musical tone.

A square wave is a non-sinusoidal periodic waveform (which can be represented as an infinite summation of sinusoidal waves), in which the amplitude alternates at a steady frequency between fixed minimum and maximum values, with the same duration at minimum and maximum. The transition between minimum to maximum is instantaneous. The ideal square wave contains only components of odd-integer harmonic frequencies.

The mixed frequency aspects of the 520 Hz signal and its harmonics are clearly defined in the current requirements of the bi-national CAN/ULC S525 – ANSI/UL 464 Audible Signaling Devices for Fire Alarm and Signaling Systems, including Accessories”.

7.3.3.2 A low frequency signaling device shall produce an acoustical output having a fundamental frequency of 520 (F1) Hz ± 10%, with subsequent harmonic frequencies occurring at 1560 (F3), 2600 (F5) and 3640 (F7) Hz ± 10% as determined by a Fast Fourier Transform (FFT) analysis of the audible alarm signal.

7.3.3.4 The maximum sound pressure level (dB) of any frequency within the FFT measurement shall be at least 5dB less than the F1 sound pressure level (dB). The minimum sound pressure level (dB) of the odd harmonics, F3 through F7, shall not be reduced from the F1 sound pressure level (dB) by more than 20dB for F3, 30dB for F5 and 50dB for F7.

As you can see, the 520 Hz dominant frequency on the left is only part of what a compliant low frequency signal must have.

As noted above the 520 Hz square wave has multiple peaks and several of these are within the speech frequency range where our hearing is most sensitive. The 520 Hz square wave peaks are more than a critical bandwidth apart so this increases the perceived loudness (although this is not reflected in the sound level measured by a sound meter). The perceived increase occurs because the different frequencies activate different parts of the basilar membrane of the inner ear. In addition, the multiple frequency peaks are less likely to be masked by ambient noise than a single frequency sound and lower frequencies penetrate walls and doors better than higher frequencies.

Solutions

Smoke Alarms

To my knowledge there are no UL/ULC listed 520 Hz smoke alarms with a low frequency (520 Hz) output.
There is an issue with available battery power to drive an amplifier and speaker to make 85 db. It is even more of an issue for sealed 10-year battery powered alarms which are now required in certain jurisdictions. On the other hand, battery technology is continuing to evolve.

There are companies that manufacture auxiliary units that “listens” for the 3100 Hz output of a conventional smoke alarm then provide one or more output signals such as a low frequency (520 Hz) Temporal (T3) (and/or T4 for Carbon Monoxide), pillow shakers, bed shakers, baritone voice messages and strobes.

Smoke Detectors with Audible bases

The Building Code allows smoke detectors connected to the building fire alarm system to be used in place of smoke alarms.

Most manufacturers of smoke detectors have ULC listed audible bases 520 Hz T3 pattern output. Some addressable systems have the capability of being programmed to produce either a Temporal 3 pattern output for smoke or a Temporal 4 pattern output for Carbon Monoxide depending on the information they receive from the detector (smoke override CO) and/or the information they receive from the control unit.

Low frequency (520 Hz) horns and sounders.

Most manufacturers of audible signaling devices have ULC listed horns or sounders with a low frequency (520 Hz) output. The Temporal pattern in some models is controlled internally, in other models by the control unit and in still others it is selectable.

Speakers

The issue of speakers is a little messier.

UL/ULC require that the combination of the control panel, tone generator or pre-recorded tone, preamplifier, mixer, output amplifier and the speaker produce an acoustical output that meets the requirement specified in CAN/ULC S525 – ANSI/UL 464. “Audible Signaling Devices …”

This is not a big issue if you are starting the installation of a Fire Alarm system from scratch, On the other hand, if you are retrofitting an existing system, it may mean that you must replace all speakers, or at least those in sleeping areas.

Power Supply Considerations

Because of the comparatively high current draw of low frequency 520 Hz devices, the selection of the power supply and accurate voltage drop calculations are critical to ensuring adequate current to the loop.

Manufacturers cannot meet the low frequency 520 Hz requirements using the traditional electro-mechanical piezo element because it cannot effectively produce the harmonics needed to comply with the 520 Hz requirements as defined per ULC S525 / UL 464. Instead, a speaker element, which inherently draws more current than a traditional piezo element, is used to acoustically meet the 520 Hz requirements. Thus, current draw for low frequency devices when compared to devices with a standard alarm tone can be higher.

Summary

It is not immediately obvious why square wave signals should be the most effective signals tested so far for waking people up. Square waves have been described as having a dissonant sound and the subjective “fullness” of the sound may give an impression of being louder (although this is not reflected in sound meter levels).

Responsiveness to a voice message, has yielded inconsistent results. Some studies with children and young adults suggest it is equivalent in effectiveness to the 520 Hz square wave signal. However, the research using older adults found the male voice to be significantly less effective than the 520 Hz square wave.

Comparison across all signals: The 520 Hz square wave was the single most effective signal, waking 92% at or below the benchmark (75 dB A) under the testing conditions. The bed and pillow shakers were about equivalent to each other, waking about 80-83% of the sample at or below their benchmark (i.e. the “off the shelf” intensity). They compared favourably to the current smoke alarm signal, which could only wake 56% at or below the benchmark intensity.

All signals performed much better than the strobe lights. For the strobe lights the lowest intensity presented was already above the level required in the standard, nevertheless only 27% awoke to this lowest intensity.

It was found that, when a signal was presented at a level that caused awakening, most people awoke to the signal within the first 10 seconds of the signal being on. Thus, it seems highly probable that a T-3 signal that is alternatively ON for about 10-15 seconds and OFF for a certain period (possibly of the same duration), will be more effective than a continuous sounding T-3 signal. A suitable ON duration of such a T-3 signal appears likely to be in the range of 10-15 seconds, with the OFF duration tentatively suggested to be of similar duration, but further research is required to determine this.

The most desirable option is that the most widely available “standard” audible smoke alarm for the overall population
maximizes the chances of people who are hard of hearing waking through the optimal mix of pitch, pattern and volume.

In summary, the 520 Hz square wave sound has consistently been found to be the most effective sound tested in waking sleeping people. In all the groups tested the 520 Hz square wave has resulted in waking most of the people tested who did not awaken to very loud (95 dB A at the pillow) emissions of the current smoke alarm sounds. There is no reason to believe that this result would not apply to the entire population. Thus, it appears that adoption of the 520 Hz square wave sound in the T-3 pattern as the standard smoke alarm sound would further reduce the rate of fatalities among sleeping people in fires (assuming current alarms have resulted in a reduction in domestic fire fatalities).}

Awakening of Sleeping People: A Decade of Research
Ian Thomas* and Dorothy Bruck, Centre for Environmental Safety and Risk Engineering, Victoria University, Melbourne, Australia
Fire Technology, 46, 743–761, 2010
2008 Springer Science+Business Media, LLC.
DOI: 10.1007/s10694-008-0065-5

Waking effectiveness of alarms (auditory, visual and tactile) for adults who are hard of hearing
D. Bruck and I. Thomas
School of Psychology
Centre for Environmental Safety and Risk Engineering (CESARE)
Victoria University, Australia

Report for the Fire Protection Research Foundation for the 2006-2007 US Fire Administration Grant
June 2007
L’Association canadienne d’alarme incendie : Signaux à basse fréquence (520 Hz)

Demande de modification CCR 856

La Commission canadienne des codes du bâtiment et de prévention des incendies a demandé au groupe de travail mixte sur les systèmes d’alarme incendie d’examiner la possibilité entourant les signaux d’alarme incendie ayant une fréquence de 520 Hz.

Pourquoi une basse fréquence et pourquoi 520 hertz?

Au cours des dernières années, on a beaucoup parlé de « basse fréquence » et de « 520 hertz (Hz) » dans le contexte des alarmes et (ou) signaux sonores, suite à l’annonce des exigences de la NFPA 72 entourant l’installation d’avertisseurs de 520 Hz dans les endroits où dorment les gens.

Lorsque j’ai commencé dans cette industrie, les dispositifs d’alarme incendie standards dans la plupart des bâtiments étaient des cloches, de 6 ou de 10 pouces. Les quelques usines bruyantes étaient dotées d’avertisseurs mécaniques.

Au fil du temps, ces dispositifs ont été mis de côté en faveur des avertisseurs plus récents (à cette époque) à faible courant et à haute fréquence. Les gens ont commencé à se plaindre qu’ils ne les entendaient pas aussi bien.

Je n’ai jamais compris pourquoi, car les fiches techniques indiquaient que la sortie sonore des anciens et des nouveaux dispositifs avait sensiblement le même niveau de décibels (dB). Moi ainsi que d’autres connaissances étions particulièrement confus par le même niveau retrouvé à la fois sur les cloches de 6 et de 10 pouces. La plupart des gens de l’industrie ne comprenaient pas à ce moment que la fréquence et l’harmonique étaient en cause, et non le niveau de sortie de dB du son. Les anciens dispositifs produisaient un son à basse fréquence comparativement aux nouveaux dispositifs. La cloche de 10 pouces produisait un son à plus basse fréquence avec plus d’harmoniques comparé à la cloche de 6 pouces. La « plénitude » subjective du son peut donner l’impression que le son est plus fort, mais cela n’est pas reflété sur les lectures de niveaux sonores.

Par la suite, un service d’incendie du Michigan a découvert que les avertisseurs de fumée standards ne réveillaient pas les enfants qui dormaient. Les membres du service ont produit une vidéo, et celle-ci s’est répandue sur le Web.

Parallèlement, une équipe de recherche en Australie a commencé à mener des recherches sur la raison pour laquelle les gens ne se réveillaient pas au son du signal d’alarme incendie. Parmi tous les signaux mis à l’essai, le signal à basse fréquence avec une fréquence fondamentale d’onde carrée de 520 Hz s’est révélé le plus efficace de tous les signaux d’urgence pour réveiller toutes les personnes qui dorment, avec ou sans perte auditive.

Ce que la recherche révèle

En 2007, Dre Dorothy Bruck et Ian Thomas ont publié une compilation d’une décennie de recherche dans le rapport : « Awakening of Sleeping People: A Decade of Research » (Réveiller les gens qui dorment : une décennie de recherche). Cette recherche a été menée au Centre for Environmental Safety and Risk Engineering de l’Université Victoria, à Melbourne. Certains des détails qui suivent ont été tirés soit du rapport de Bruck/Thomas qui a paru dans Fire Technology 46 en 2010 (pages 743 à 761), soit dans le rapport « Alarms and adults who are hard of hearing » (Alarmes et adultes ayant une déficience auditive), préparé pour la Fire Protection Research Foundation en 2007.

Des études ont été menées auprès d’adultes en santé et de groupes à risque élevé. Le groupe à risque élevé comprenait des enfants d’âge scolaire, des personnes ayant une perte auditive et des personnes sous l’effet de drogues ou d’alcool. Les participants à l’étude étaient exposés à une gamme de signaux pendant deux nuits non consécutives alors qu’ils dormaient. Voici les signaux qui ont été mis à l’essai :

1. Signal d’onde carrée de 400 Hz
2. Signal d’onde carrée de 520 Hz
3. Signal à tonalité pure de 3 kHz
4. Vibreur de lit
5. Vibreur d’oreiller

Dans certaines études, des voix masculines, des voix féminines et des stroboscopes ont également été ajoutés.

Donald Boynowski
L’ACAI président sortant
The benefits are loud and clear.
SIMPLEX TrueAlert ES speakers are the industry’s first notification appliances with addressable audio. The speakers feature a clean appearance, excellent sound quality and combined fire alarm and public address capability. Plus, you’ll enjoy the same design and wiring flexibility as all our TrueAlert ES addressable solutions. Your clients will benefit from easier testing and maintenance and the ability to program different announcements for different areas of their property. It sounds like the future has arrived.

To see how our entire line of products and services can help your business, visit us at www.TycoIFS.ca, or call 800-565-5400.
De tous les signaux mis à l’essai sur plus d’une décennie de recherche, il a été constaté que le signal d’onde carrée de 520 Hz était le plus efficace pour réveiller toutes les personnes, avec ou sans perte auditive. Chez les enfants et les jeunes adultes, le signal à basse fréquence est de 6 à 10 fois plus efficace que le signal actuel à fréquence élevée. Chez les adultes atteints d’une perte auditive, le signal à basse fréquence est au-delà de sept fois plus efficace que la tonalité standard à fréquence élevée (~3100 Hz) utilisée dans la plupart des dispositifs sonores d’aujourd’hui.

Les stroboscopes n’étaient pas efficaces. Vous pourriez croire que les vibreurs de lit et d’oreiller seraient plus efficaces, et c’était le cas; par contre, de manière étonnante, ils n’étaient pas aussi efficaces que le son d’onde carrée de 520 Hz.

Par conséquent, peu importe les participants de l’étude, le signal d’onde carrée de 520 Hz était le son le plus efficace pour réveiller les gens. Cela est particulièrement important lorsque nous parlons des personnes qui sont plus à risque lors d’un incendie, comme les enfants, les adultes ayant une déficience, les personnes âgées et celles atteintes de troubles auditifs. De toute évidence, les répercussions sont considérables.

Qu’est-ce qu’une onde carrée de 520 Hz?

Il est important de noter que la déclaration du fabricant d’un signal d’alerte doté d’une fréquence dominante de 520 Hz n’est pas tout à fait suffisante. La recherche scientifique qui a mené à l’exigence de 520 Hz aux États-Unis et qui est proposée au Canada indique qu’une fréquence mixte, avec une fréquence dominante de 520 Hz et des harmoniques, est ce qui est exigé pour une efficacité maximale à réveiller les gens. Les harmoniques impaires produisent un son quelque peu discordant au lieu d’une tonalité musicale claire.

Une onde carrée est une forme d’onde périodique non sinusoidale (qui peut être représentée comme une série infinie d’ondes sinusoidales), dans laquelle l’amplitude alterne régulièrement entre des valeurs minimales et maximales fixes, avec la même durée aux valeurs minimales et maximales. La transition entre les valeurs minimales et maximales est instantanée. L’onde carrée idéale contient seulement des composantes de fréquence d’harmoniques entières impaires.

Les aspects de la fréquence mixte du signal de 520 Hz et les harmoniques connexes sont clairement définis dans les exigences actuelles de la norme binationale CAN/ULC S525 – ANSI/UL 464 « Dispositifs de signalisation sonore des systèmes d’alarme incendie, y compris les accessoires ».

7.3.3.2 Un dispositif de signalisation à basse fréquence doit produire une sortie acoustique ayant une fréquence fondamentale de 520 (F1) Hz ± 10 %, accompagnée de fréquences d’harmoniques subséquentes survenant à 1560 (F3), à 2600 (F5) et à 3640 (F7) Hz ± 10 %, tel que déterminé par une analyse de transformation de Fourier rapide (TFR) du signal d’alarme sonore. [Traduction libre]

7.3.3.4 Le niveau de pression acoustique maximal (dB) de toute fréquence dans la mesure de TFR doit être au minimum 5 dB de moins que le niveau de pression acoustique (dB) F1. Le niveau de pression acoustique minimale (dB) des harmoniques impaires, F3 à F7, ne doit pas être inférieur au niveau de pression acoustique (dB) F1 de plus de 20 dB pour F3, 30 dB pour F5 et 50 dB pour F7. [Traduction libre]

Comme vous pouvez le constater, la fréquence dominante de 520 Hz à gauche est seulement une partie de ce que doit comprendre un signal à basse fréquence conforme.
Tel que mentionné ci-dessus, l’onde carrée de 520 Hz a de multiples niveaux de pointe et plusiers de ceux-ci se retrouvent à l’intérieur de la plage de fréquence vocale, soit celle la plus sensible à l’ouïe. Les niveaux de pointe de l’onde carrée de 520 Hz ont plus d’un intervalle critique de largeur de bande, de sorte que cela augmente le niveau sonore perçu (meme si ce n’est pas reflété dans les lectures du niveau sonore par un instrument de mesure). L’augmentation perçue survient parce que les différentes fréquences actionnent différentes parties de la membrane basilaire de l’oreille interne. De plus, les multiples niveaux de pointe de la fréquence sont moins susceptibles d’être masqués par le bruit ambiant qu’un son à fréquence simple, et les basses fréquences pénètrent mieux au travers des murs et des portes que les fréquences plus élevées.

Solutions

Avertisseurs de fumée

À ma connaissance, il n’existe pas d’avertisseurs de fumée de 520 Hz avec une sortie à basse fréquence (520 Hz) inscrits auprès des UL/ULC.

Un problème demeure quant à la disponibilité de l’alimentation à batterie pour assurer le fonctionnement d’un amplificateur et d’un haut-parleur afin de produire 85 dB. Cette question est davantage problématique en ce qui concerne les avertisseurs scellés de 10 ans alimentés à batterie, qui sont maintenant exigés sur certains territoires. En revanche, la technologie à batterie continue d’évoluer.

Certaines entreprises fabriquent des unités auxiliaires qui « écoutent » la sortie de 3100 Hz d’un avertisseur de fumée classique, puis fournissent un ou plusieurs signaux de sortie, comme une basse fréquence (520 Hz), un signal temporel (T3) (et (ou) T4 pour le monoxyde de carbone), des vibreurs de lit, des messages barytons et des stroboscopes.

Détecteurs de fumée avec bases sonores

Le Code du bâtiment permet aux détecteurs de fumée connectés au système d’alarme incendie du bâtiment d’être utilisés au lieu des avertisseurs de fumée.

La plupart des fabricants de détecteurs de fumée offrent des bases sonores dotées d’une sortie de 520 Hz et d’une plateforme T3 inscrites auprès des ULC. Certains systèmes adressables ont la capacité d’être programmés pour produire soit une sortie à rythme temporel 3 pour la fumée, soit une sortie à rythme temporel 4 pour le monoxyde de carbone, selon l’information qu’ils reçoivent du détecteur (la fumée l’emporte sur le monoxyde de carbone) et (ou) l’information qu’ils reçoivent du poste de contrôle.

Avertisseurs et dispositifs de signalisation sonore à basse fréquence (520 Hz)

La plupart des fabricants de dispositifs de signaux sonores offrent des avertisseurs et des dispositifs de signalisation sonore produisant une sortie à basse fréquence (520 Hz) inscrits auprès des ULC. Le rythme temporel de certains modèles est contrôlé à l’intérieur ou, dans d’autres modèles, par le poste de contrôle, et peut même être sélectionné dans certains modèles.

Haut-parleurs

La question entourant les haut-parleurs est un peu plus compliquée.

Les UL/ULC exigent que la combinaison du panneau de contrôle, générateur de tonalité ou tonalité préenregistrée, préamplificateur, mixeur, amplificateur de sortie et haut-parleur produise une sortie acoustique qui respecte les exigences précisées dans la norme CAN/ULC S525 – ANSI/UL 464 « Dispositifs de signalisation sonore ».

Il ne s’agit pas d’un grave problème si vous commencez l’installation d’un système d’alarme incendie en partant de zéro. D’un autre côté, si vous modifiez un système existant, cela peut exiger le remplacement de tous les haut-parleurs, ou du moins, ceux dans les pièces où les gens dorment.

Considérations en matière de blocs d’alimentation

En raison du courant tiré comparativement élevé des dispositifs à basse fréquence de 520 Hz, la sélection du bloc d’alimentation et le calcul précis de la chute de tension sont essentiels pour assurer un courant adéquat dans la boucle.

Les fabricants ne peuvent pas respecter les exigences de basse fréquence de 520 Hz en utilisant l’élément piézo électromécanique classique, car il n’est pas en mesure de produire efficacement les harmoniques requises pour être conforme aux exigences de 520 Hz, comme le définit ULC S525 / UL 464. Plutôt, un élément de haut-parleur, qui tire intrinsèquement plus de courant qu’un élément piézo classique, est utilisé pour répondre aux exigences acoustiques de 520 Hz. Par conséquent, le courant tiré pour les dispositifs à basse fréquence, comparativement aux dispositifs produisant une tonalité d’alarme standard, peut être plus élevé.

Résumé

La raison pour laquelle les signaux à ondes carrées sont les signaux les plus efficaces est simple pour réveiller les gens qui dorment ne saute pas aux yeux. Les ondes carrées ont été décrites comme produisant un son dissonant et la « plénitude » subjective du son peut donner l’impression qu’il est plus fort (meme si cela n’est pas reflété dans les lectures de niveaux sonores).

La réceptivité à un message vocal a produit des résultats irréguliers. Certaines études menées avec des enfants et des
jeunes adultes suggèrent une efficacité équivalente au signal d'onde carrée de 520 Hz. Cependant, la recherche auprès d'adultes plus âgés révèle que la voix masculine est considérablement moins efficace que l'onde carrée de 520 Hz.

Comparaison de tous les signaux : l'onde carrée de 520 Hz était le signal le plus efficace, réveillant 92% des participants au niveau égal ou inférieur du seuil (75 dB A) en conditions d'essai. Les vibreurs de lit et d'oreiller étaient sensiblement équivalents, réveillant de 80 à 83% des participants au niveau égal ou inférieur du seuil (p. ex., l'intensité standard). Ils se sont bien comparés au signal d'avertisseur de fumée actuel, qui a seulement réveillé 56% des participants au niveau égal ou inférieur du seuil d'intensité.

Tous les signaux ont performé beaucoup mieux que les stroboscopes. Pour les stroboscopes, la plus faible intensité présentée se trouvait déjà au-dessus du niveau requis dans la norme; néanmoins, seulement 27% des participants se sont réveillés en présence de cette faible intensité.

Lorsqu’un signal était présenté à un niveau destiné à réveiller les gens, il a été constaté que la plupart des personnes se réveillaient au déclenchement du signal dans les 10 premières secondes. Ainsi, il semble grandement probable qu’un signal T-3 qui est en marche de manière alternante pendant environ 10 à 15 secondes, puis arrêté pour une certaine période (possiblement pendant la même durée), sera plus efficace qu’un signal T-3 continu. La période appropriée de marche d’un tel signal T-3 semble se trouver dans la plage des 10 à 15 secondes, avec une période d’arrêt sensiblement similaire, mais la recherche doit se poursuivre à cet effet.

La meilleure option serait que l’avertisseur de fumée « standard » le plus largement disponible pour l’ensemble de la population maximise les chances des personnes ayant un trouble auditif de se réveiller grâce à une combinaison optimale de débit, de rythme et de volume.

En résumé, le son d’onde carrée de 520 Hz a été déterminé de manière constante comme étant le son le plus efficace mis à l’essai pour réveiller les gens qui dorment. Parmi tous les groupes à l’essai, l’onde carrée de 520 Hz a réussi à réveiller la plupart des personnes qui ne s’étaient pas réveillées au son très fort (95 dB A au niveau de l’oreiller) produit par les avertisseurs de fumée actuels. Il n’existe aucune raison de croire que ce résultat ne s’appliquerait pas à l’ensemble de la population. Par conséquent, il semble que l’adoption d’un son d’onde carrée de 520 Hz dans le rythme T-3 comme son standard de l’avertisseur de fumée réduirait davantage le taux de mortalité chez les gens qui dorment lorsqu’un incendie se déclare (en présumant que les avertisseurs actuels ont entraîné une réduction du nombre de décès lors des incendies à domicile).
10 years of accurate, trusted inspection collection

BRC is committed to providing the most trusted fire & life safety, inspection and compliance reporting solutions in the world. Technicians use a handheld or smart phone to document inspections, while BRC formats the final check lists and reports for online distribution.

BuildingReports.ca 416.483.2895

Trusted Partner in the Planning, Execution and Delivery of Fire and Life Safety Inspections

QUALITY TEST EQUIPMENT MADE EASY

SHOP ONLINE FOR OUR BEST PRICES

One-stop online shopping for all your fire alarm, detector, battery & other alarm component testing equipment. All the brands you’re looking for, priced up-front in Canadian dollars.

Visit our store today at RebelEquipped.com

ONLINE DISCOUNT CODE: CFAA5
THE BOARD OF DIRECTORS:

<table>
<thead>
<tr>
<th>Position</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>President/Président</td>
<td>Simon Crosby</td>
</tr>
<tr>
<td>1st Vice President/1er vice-président</td>
<td>Erick Gagne</td>
</tr>
<tr>
<td>2nd Vice President/2e vice-président</td>
<td>Victor Repovz</td>
</tr>
<tr>
<td>Secretary/Secrétaire</td>
<td>Daryll de Waal</td>
</tr>
<tr>
<td>Treasurer/Tréorier</td>
<td>Patricia Duggan</td>
</tr>
<tr>
<td>Past President/ président sortant</td>
<td>Donald Boynowski</td>
</tr>
</tbody>
</table>

DIRECTORS AT LARGE:

<table>
<thead>
<tr>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stephen Ames</td>
</tr>
<tr>
<td>Ken Baird</td>
</tr>
<tr>
<td>Gerry Bourne</td>
</tr>
<tr>
<td>Alan Cavers</td>
</tr>
<tr>
<td>Ralph Coco</td>
</tr>
<tr>
<td>Howard Diamond</td>
</tr>
<tr>
<td>David Duggan</td>
</tr>
<tr>
<td>David Goodyear</td>
</tr>
<tr>
<td>Allan Hess</td>
</tr>
<tr>
<td>Michael Hugh</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paul Jewett</td>
</tr>
<tr>
<td>Gerry Landmesser</td>
</tr>
<tr>
<td>Fred Leber</td>
</tr>
<tr>
<td>Manuel Lopes</td>
</tr>
<tr>
<td>David Morris</td>
</tr>
<tr>
<td>Scott Pugsley</td>
</tr>
<tr>
<td>Jeffry Tondang</td>
</tr>
<tr>
<td>Anthony Van Odyk</td>
</tr>
<tr>
<td>Dennis Weber</td>
</tr>
</tbody>
</table>

DIRECTORS – CHAPTER PRESIDENTS:

<table>
<thead>
<tr>
<th>Chapter/Section</th>
<th>President</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alberta Chapter/Section locale de l’Alberta</td>
<td>Joe Davis</td>
</tr>
<tr>
<td>British Columbia Chapter/Section locale de la Colombie-Britannique</td>
<td>Gord Morrison</td>
</tr>
<tr>
<td>Manitoba Chapter/Section locale du Manitoba</td>
<td>Derrick Bertrand</td>
</tr>
<tr>
<td>National Capital Region/Région de la Capitale nationale</td>
<td>Peter Hallinan</td>
</tr>
<tr>
<td>Ontario Chapter/Section locale de l’Ontario</td>
<td>Evan Bombino</td>
</tr>
<tr>
<td>Quebec Chapter/Section locale du Québec</td>
<td>Daniel Guerin</td>
</tr>
<tr>
<td>Saskatchewan Chapter/Section locale de la Saskatchewan</td>
<td>Jordan Klemick</td>
</tr>
</tbody>
</table>
COMMITTEE CHAIRS:
PRÉSIDENTS DE COMITÉS:

Executive / Administratif:
Simon Crosby
Jensen Hughes
scrosby@jensenhughes.com

Finance / Finances:
Patricia Duggan
Fire Detection Devices Ltd.
patricia.duggan@firedetectiondevices.com

Governance / Direction:
Ken Baird
Life Member / LRI Fire Protection & Building Code Engineers
kbaird@lrifire.com

Industry Affairs / Affaires industrielles:
Erick Gagne
Tyco Integrated Fire & Security
egagne@simplexgrinnell.com

Education / Éducation:
Patricia Duggan
Fire Detection Devices Ltd.
patricia.duggan@firedetectiondevices.com

Revitalization & Membership / Revitalisation et adhésion:
Daryll de Waal
Panther Integrations
daryll.dewaal@pantherintegration.com

Technician / Technicien:
John MacDonald
Mac 1 Industries Ltd.
jmac@mac1.ca

Marketing & Communications / Marketing et communication:
Michael Hugh
Tyco Integrated Fire & Security
mhugh@simplexgrinnell.com

Codes & Standards / Codes et normes:
Dennis Weber
Life Member / Vipond
dennis.weber@vipond.ca

STAFF
PERSONNEL:

Manager, Membership & Finance Ruth Kavanagh ruth@cfaa.ca
Manager, Technician Programs Jacqueline Jones jackie@cfaa.ca

If you need to get in touch with the CFAA:
Address: 85 Citizen Court, Units 3 & 4, Markham, ON L6G 1A8
Phone: 905.944.0030
Fax: 905.479.3639
Toll Free: 1.800.529.0552
Email: admin@cfaa.ca
For all other inquiries, please visit www.cfaa.ca
Visit us online for more information about seminars, AHJ training, continuing education sessions, and other sessions outside the mandatory fire alarm technician theory courses.

www.cfaa.ca/EducationSeminars.aspx

Additionally, correspondence courses can be purchased online as well. Please visit the link below to see the options.

www.cfaa.ca/Courses/courses.aspx

Courses texts and manuals may also be purchased through the website. Please visit the link below to acquire all mandatory course materials.

www.cfaa.ca/Products/books--manuals.aspx

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 19</td>
<td>CFAA Ontario Chapter – Continuing Education Seminar – Back to Basics</td>
<td>Crystal Fountain</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Markham, Ontario</td>
</tr>
<tr>
<td>September 14</td>
<td>CFAA BC Chapter Technical Seminar</td>
<td>Justice Institute,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>New Westminster, BC</td>
</tr>
<tr>
<td>September 21</td>
<td>CFAA Alberta Chapter Technical Seminar</td>
<td>Coast Plaza Hotel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Calgary, Alberta</td>
</tr>
<tr>
<td>October 3</td>
<td>CFAA Manitoba Chapter Technical Seminar</td>
<td>Franco Manitoban Cultural (CCFM)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Winnipeg, Manitoba</td>
</tr>
<tr>
<td>November 7</td>
<td>CFAA Quebec Chapter Technical Seminar</td>
<td>Centre de congrès Renaissance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Montreal, Quebec</td>
</tr>
<tr>
<td>November 8</td>
<td>CFAA National Capital Region Technical Seminar</td>
<td>Ottawa Convention and Event Centre,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ottawa, Ontario</td>
</tr>
</tbody>
</table>
Advertisers Index & Rates

Advertising Information

Business & Office Centro Inc. is a partner of the Canadian Fire Alarm Association and manages all advertising planning for the CFAA Journal. For all ad inquiries, please contact Ann Law.

Email: annlaw.cfaa@bocentro.com Tel. 905.470.1122
End-to-End Infrared Beam Smoke Detector from Edwards

Featuring integrated laser alignment, knockouts, configurable detector sensitivity and drift compensation, you’ll simplify your installation while reducing nuisance alarms.

The EC3000 is ideal for coverage of large areas, high ceilings, dusty and dirty environments, or environments that are prone to extreme temperatures—all at minimal cost.

Solutions you trust from the experts you know. Call us today.

Détecteur de fumée à faisceau infrarouge de bout en bout d’Edwards

Alignement laser intégré, entrées défonçables, sensibilité réglable et compensation de dérive … tout pour simplifier l’installation et minimiser les fausses alarmes.

Le détecteur EC3000 est idéal pour une utilisation dans les zones de couverture étendue, les pièces à plafond haut, les environnements poussiéreux et sales, ou les environnements soumis à des températures extrêmes, et ce, à un coût modeste.

Solutions vous font confiance aux experts que vous connaissez. Appelez-nous des aujourd’hui.